Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The microstructural properties and hardness of a model ternary Fe-4Cr-6Ti ferritic alloy aged at 800°C for 8, 16 and 24 h are investigated in detail. Fine Fe2Ti Laves phase particles precipitate in the α-Fe (ferrite) matrix phase after solutionizing and subsequent aging treatments. The size and amount of Fe2Ti precipitates gradually increase with increasing aging time. The magnetic measurements of the aged samples confirm the variations in the microstructural properties including the volume fraction of the constituent phases, and Ti content of the α-Fe matrix phase. The mean Vickers microhardness value also increases from 203.5 to 238.4 with increasing aging time from 8 to 24 h. In addition, the cyclic oxidation behavior of 24 h aged sample, which contains maximum amount of Fe2Ti precipitates, is also investigated in detail. X-ray diffraction analysis reveals that scale product is α-Fe2O3 (hematite). Significant scale spallation and void formation is observed on the surfaces of 24 h aged Fe-4Cr-6Ti sample oxidized at 500°C.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
827--836
Opis fizyczny
Bibliogr. 63 poz., fot., rys., tab., wzory
Twórcy
autor
- Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Konya, Turkey
autor
- Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Konya, Turkey
autor
- Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Konya, Turkey
autor
- Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Konya, Turkey
autor
- Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Konya, Turkey
Bibliografia
- [1] S. Baik, M.J.S. Rawlings, D.C. Dunand, Effect of aging on coarsening- and creep resistance of a Ti-modified Fe-Ni-Al-Cr-Mo ferritic steel with L21/B2 composite precipitates, Materials Science and Engineering A 776 138987 (2020).
- [2] D.G. Morris, I. Gutierrez-Urrutia, M.A. Muñoz-Morris, High temperature creep behaviour of an FeAl intermetallic strengthened by nanoscale oxide particles, International Journal of Plasticity 24 (7), 1205-1223 (2008).
- [3] B. Hkdh, Design of ferritic creep-resistant steels, ISIJ international 41 (6), 626-640 (2001).
- [4] C. Stallybrass, G. Sauthoff, Ferritic Fe-Al-Ni-Cr alloys with coherent precipitates for high-temperature applications, Materials Science and Engineering A 387 985-990 (2004).
- [5] C. Stallybrass, A. Schneider, G. Sauthoff, The strengthening effect of (Ni,Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe-Al-Ni-Cr alloys, Intermetallics 13 (12), 1263-1268 (2005).
- [6] F. Masuyama, N. Komai, Creep Failure Behavior of Creep-Strength Enhanced Ferritic Steels ASME/JSME 2004 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers Digital Collection, 107-114 (2004).
- [7] X.P. Wang, A.M. Zhao, Z.Z. Zhao, Y. Huang, Y. Yu, Precipitation strengthening by nanometer-sized carbides in hot-rolled ferritic steels, Journal of Iron and Steel Research International 21 (12), 1140-1146 (2014).
- [8] J. Chen, H. Liu, Z. Pan, K. Shi, H. Zhang, J. Li, Carbide evolution and service life of simulated post weld heat treated 2.25 Cr-1Mo steel, Materials Science and Engineering A 622, 153-159 (2015).
- [9] V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling, Materials Science and Engineering A 477 (1-2), 334-343 (2008).
- [10] K. Sakuraya, H. Okada, F. Abe, BN type inclusions formed in high Cr ferritic heat resistant steel, Energy Materials 1 (3), 158-166 (2006).
- [11] X. Zhou, C. Liu, L. Yu, Y. Liu, H. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review, Journal of Materials Science & Technology 31 (3), 235-242 (2015).
- [12] T. Horiuchi, M. Igarashi, F. Abe, Improved utilization of added B in 9Cr heat-resistant steels containing, W ISIJ International 42 (Suppl), S67-S71 (2002).
- [13] V.G. Harris, D.J. Fatemi, K.B. Hathaway, Q. Huang, A. Mohan, G.J. Long, Atomic structure and magnetism of ordered and disordered Al0.5Fe0.5-xMnx alloys, Journal of Applied Physics 85 (8), 5181-5183 (1999).
- [14] N. Takata, H. Ghassemi-Armaki, M. Takeyama, S. Kumar, Nanoindentation study on solid solution softening of Fe-rich Fe2Nb Laves phase by Ni in Fe-Nb-Ni ternary alloys, Intermetallics 70, 7-16 (2016).
- [15] K. Yamamoto, Y. Kimura, F.G. Wei, Y. Mishima, Design of laves phase strengthened ferritic heat resisting steels in the Fe-Cr-Nb (-Ni) system, Materials Science and Engineering A 329, 249-254 (2002).
- [16] M. Takeyama, N. Gomi, S. Morita, T. Matsuo, Phase Equilibria and Lattice Parameters of Fe2Nb Laves Phase in Fe-Ni-Nb Ternary System at Elevated Temperatures MRS Online Proceedings Library Archive 842 (2004).
- [17] I. Tarigan, K. Kurata, N. Takata, T. Matsuo, M. Takeyama, Novel concept of creep strengthening mechanism using grain boundary Fe2Nb Laves phase in austenitic heat resistant steel MRS Online Proceedings Library Archive 1295 (2011).
- [18] L. Machon, G. Sauthoff, Deformation behaviour of Al-containing C14 Laves phase alloys, Intermetallics 4 (6), 469-481 (1996).
- [19] K. Yamamoto, Y. Kimura, Y. Mishima, Effect of matrix substructures on precipitation of the laves phase in Fe-Cr-Nb-Ni system, ISIJ international 43 (8), 1253-1259 (2003).
- [20] F. Abe, Effect of fine precipitation and subsequent coarsening of Fe 2 W Laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels, Metallurgical and Materials Transactions A 36 (2) , 321-332 (2005).
- [21] E.Y. Plotnikov, Z. Mao, S. Baik, M. Yildirim, Y. Li, D. Cecchetti, R.D. Noebe, G. Martin, D.N. Seidman, A correlative four-dimensional study of phase-separation at the subnanoscale to nanoscale of a NiAl alloy, Acta Materialia 171, 306-333 (2019).
- [22] G. Wang, H. Ding, R. Chen, J. Guo, H. Fu, Effect of current intensity on microstructure of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique, Acta Metall. Sin. 53 (11), 1461-1468 (2017).
- [23] J. Wu, C. Li, Y.C. Liu, Y. Wu, Q. Guo, H. Li, H. Wang, Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy, Materials Science and Engineering A 743, 623-635 (2019).
- [24] H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, A. Scholz, C. Berger, K.H. Mayer, W. Blum, Coarsening of precipitates and degradation of creep resistance in tempered martensite steels, Materials Science and Engineering A 510, 81-87 (2009).
- [25] T. Liu, C. Wang, H. Shen, W. Chou, N.Y. Iwata, A. Kimura, The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys, Corrosion Science 76, 310-316 (2013).
- [26] T. Kaito, T. Narita, S. Ukai, Y. Matsuda, High temperature oxidation behavior of ODS steels, Journal of Nuclear Materials 329, 333, 1388-1392 (2004).
- [27] M.K. Miller, C.M. Parish, Q. Li, Advanced oxide dispersion strengthened and nanostructured ferritic alloys, Materials Science and Technology 29 (10), 1174-1178 (2013).
- [28] K. Kawasaki, Y. Enomoto, Statistical theory of Ostwald ripening with elastic field interaction, Physica A: Statistical Mechanics and its Applications 150 (3), 463-498 (1988).
- [29] K.E. Yoon, R.D. Noebe, D.N. Seidman, Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni-Cr-Al superalloy. II: Analysis of the coarsening behavior, Acta Materialia 55 (4), 1159-1169 (2007).
- [30] C.K. Sudbrack, T.D. Ziebell, R.D. Noebe, D.N. Seidman, Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni-Al-Cr superalloy, Acta Materialia 56 (3), 448-463 (2008).
- [31] J.C. Russ, R.T. Dehoff, Springer Science & Business Media 2012.
- [32] I. Tarigan, N. Takata, M. Takeyama, Grain boundary precipitation strengthening mechanism by Fe2Nb Laves phase in creep of Fe-20Cr-30Ni-2Nb austenitic heat resistant steel, Proceedings of the 12th International Conference on Creep and Fracture of Engineering Materials and Structure (JIMIS 11), 2012.
- [33] A.L. Sutton, W. Hume-Rothery, CXLI. The lattice spacings of solid solutions of titanium, vanadium, chromium, manganese, cobalt and nickel in α-iron the London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 46 (383), 1295-1309 (1955).
- [34] E.P. Abrahamson, S.L. Lopata, The Lattice Parameters And Solubility Limits Of Alpha Iron As Affected By Some Binary Transition-Element Additions, Army Materials Research Agency Watertown Mass, 1966.
- [35] R. Eris, M.V. Akdeniz, A.O. Mekhrabov, Atomic size effect of alloying elements on the formation, evolution and strengthening of γ′-Ni3Al precipitates in Ni-based superalloys, Intermetallics 109, 37-47 (2019).
- [36] G. Frommeyer, U. Brux, Microstructures and Mechanical Properties of high‐Strength Fe‐Mn‐Al‐C Light‐Weight TRIPLEX Steels, Steel Research International 77 (9-10), 627-633 (2006).
- [37] J.I. Schwerdt, G.F. Goya, M. Pilar Calatayud, C.B. Herenu, P.C. Reggiani, G.R. G., Magnetic field-assisted gene delivery: achievements and therapeutic potential, Current Gene Therapy 12 (2), 116-126 (2012).
- [38] J.L. Murray, Phase diagrams of binary titanium alloys, ASM International 340-345 (1987).
- [39] K.C.H. Kumar, P. Wollaiits, L. Delaey, Thermodynamic reassessment and calculation of Fe-Ti phase diagram, Calphad 18 (2), 223-234 (1994).
- [40] L.F.S. Dumitrescu, M. Hillert, N. Sounders, Comparison of Fe-Ti Assessments, Journal of Phase Equilibria 19 (5), 441 (1998).
- [41] G. Cacciamani, J. De Keyzer, R. Ferro, U.E. Klotz, J. Lacaze, P. Wollants, Critical evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti alloy systems, Intermetallics 14 (10-11), 1312-1325 (2006).
- [42] L.I. Duarte, U.E. Klotz, C. Leinenbach, M. Palm, F. Stein, J.F. Löffler, Experimental Study of the Fe-Ni-Ti system, Intermetallics 18 (3), 374-384 (2010).
- [43] H.I. Aaronson, F.K. Legoues, Assessment of studies on homogeneous diffusional nucleation kinetics in binary metallic alloys, Metallurgical Transactions, A, Physical Metallurgy And Materials Science 23 A (7), 1915-1945 (1992).
- [44] G. Martin, Solid state phase transformation in metals and alloys Orsay: Les Editions de Physique (1978).
- [45] M.S. Atas, M. Yildirim, Temporal evolution, coarsening behavior and oxidation resistance of Ni-15Al superalloy, Journal of Alloys and Compounds 809, 151784 (2019).
- [46] M.S. Atas, M. Yildirim, Morphological development, Coarsening, and Oxidation Behavior of Ni-Al-Nb Superalloys, Journal of Materials Engineering and Performance 29, 4421-4434 (2020).
- [47] M. Eumann, M. Palm, G. Sauthoff, Alloys based on Fe3Al or FeAl with strengthening Mo3Al precipitates, Intermetallics 12 (6), 625-633 (2004).
- [48] P.N.T. Unwin, G.W. Lorimer, R.B. Nicholson, The origin of the grain boundary precipitate free zone, Acta Metallurgica 17 (11), 1363-1377 (1969).
- [49] N. Ryum, The influence of a precipitate-free zone on the mechanical properties of an Al-Mg-Zn alloy, Acta Metallurgica 16 (3), 327-332 (1968).
- [50] M. Yildirim, M.V. Akdeniz, M.A. O., Microstructural Investigation and Phase Relationships of Fe-Al-Hf, Alloys Metallurgical and Materials Transactions A 45 (8), 3412-3421 (2014).
- [51] S. Milenkovic, M. Palm, Microstructure and mechanical properties of directionally solidified Fe-Al-Nb eutectic, Intermetallics 16 (10), 1212-1218 (2008).
- [52] N. Wang, Y. Liu, H. Zhang, X. Chen, Y. Li, Effect of Co, Cu, Nb, Ti, V on magnetostriction and mechanical properties of TbDyFe alloys, Intermetallics 100, 188-192 (2018).
- [53] N. Babu, R. Balasubramaniam, A. Ghosh, High-temperature oxidation of Fe3Al-based iron aluminides in oxygen, Corrosion Science 43 (12), 2239-2254 (2001).
- [54] C.H. Xu, W. Gao, H. Gong, Oxidation behaviour of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics, Intermetallics 8 (7), 769-779 (2000).
- [55] N. Birks, G.H. Meier, F. Pettit, Cambridge University Press 2006.
- [56] C.H. Xu, W. Gao, S. Li, Oxidation behaviour of FeAl intermetallics-the effect of Y on the scale spallation resistance, Corrosion Science 43 (4), 671-688 (2001).
- [57] D. Vojtěch, T. Popela, J. Kubásek, J. Maixner, P. Novák, Comparison of Nb-and Ta-effectiveness for improvement of the cyclic oxidation resistance of TiAl-based intermetallics, Intermetallics 19 (4), 493-501 (2011).
- [58] D. Vojtěch, J. Čížkovský, P. Novák, J. Šerák, T. Fabián, Effect of niobium on the structure and high-temperature oxidation of TiAl-Ti5Si3 eutectic alloy, Intermetallics 16 (7), 896-903 (2008).
- [59] H.J. Grabke, M. Schütze, John Wiley & Sons 2008.
- [60] M.A. Montealegre, J.L. González-Carrasco, M.A. Munoz-Morris, Oxidation behaviour of Fe40Al alloy strip, Intermetallics 9 (6), 487-492 (2001).
- [61] P.F. Tortorelli, K. Natesan, Critical factors affecting the high-temperature corrosion performance of iron aluminides, Materials Science and Engineering A 258 (1-2) ,115-125 (1998).
- [62] W.J. Quadakkers, P.J. Ennis, J. Zurek, M. Michalik, Steam oxidation of ferritic steels - laboratory test kinetic data, Materials at High Temperatures 22 (1-2), 47-60 (2005).
- [63] L. Dingqiang, X. Yun, L. Dongliang, Oxidation behavior of FeAl alloys with and without titanium, Journal of Materials Science 36 (4), 979-983 (2001).
Uwagi
1. This paper was prepared from graduation project of Ahmet Demirel, Emre Can Cetin and Ali Karakus.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb92198d-d4ac-47ee-b874-db477aa52cc1