Identyfikatory
Warianty tytułu
Analiza produkcji entropii oraz transportu ciepła i masy w przepływie wzdłuż przepuszczalnego klina z uwzględnieniem skoku temperatury i reakcji chemicznych
Języki publikacji
Abstrakty
Second law analysis (entropy generation) for the steady two-dimensional laminar forced convection flow, heat and mass transfer of an incompressible viscous fluid past a nonlinearly stretching porous (permeable) wedge is numerically studied. The effects of viscous dissipation, temperature jump, and first-order chemical reaction on the flow over the wedge are also considered. The governing boundary layer equations for mass, momentum, energy and concentration are transformed using suitable similarity transformations to three nonlinear ordinary differential equations (ODEs). Then, the ODEs are solved by using a Keller’s box algorithm. The effects of various controlling parameters such as wedge angle parameter, velocity ratio parameter, suction/injection parameter, Prandtl number, Eckert number, temperature jump parameter, Schmidt number, and reaction rate parameter on dimensionless velocity, temperature, concentration, entropy generation number, and Bejan number are shown in graphs and analyzed. The results reveal that the entropy generation number increases with the increase of wedge angle parameter, while it decreases with the increase of velocity ratio parameter. Also, in order to validate the obtained numerical results of the present work, comparisons are made with the available results in the literature as special cases, and the results are found to be in a very good agreement.
W pracy przedstawiono analizę numeryczną procesu produkcji entropi oraz transportu ciepła i masy w stacjonarnym, dwuwymiarowym przepływie konwekcyjnym cieczy lekkiej wzdłuż porowatego klina o nieliniowo zmiennym kącie rozwarcia. W analizie rozważono efekty związane z dyssypacją lepkościową, skokiem temperatury reakcjami chemicznymi pierwszego rzędu. Równania różniczkowe opisujące transport masy, pędu, energii i stężeń reagentów w warstwie przyściennej zostały przekształcone za pomoc˛a odpowiednich transformacji do układu trzech równań różniczkowych zwyczajnych. Trzymany układ został rozwiązany numerycznie za pomocą algorytmu typu box zaproponowanego przez Kellera. W pracy zbadano i przedstawiono w formie graficznej wpływ parametrów takich, jak kąt rozwarcia klina, intensywność transpiracji przez ścianę klina, liczby Prandtla, Eckerta i Schmidta, wielkość skoku temperatury i szybkość reakcji chemicznych na pola prędkości, temperatury i stężenia reagentów, produkcję entropii i liczbę Bejana. Otrzymane wyniki pokazują, że współczynnik produkcji entropii rośnie wraz z powiększaniem kąta klina i maleje wraz powiększaniem stosunku prędkości. W celu walidacji otrzymanych rezultatów, porównano je z wynikami innych dostępnych w literaturze badań i stwierdzono bardzo dobrą zgodność.
Wydawca
Czasopismo
Rocznik
Tom
Strony
565--587
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Salmas Branch, Islamic Azad University, Salmas, Iran
Bibliografia
- [1] V. Nagendramma,K. Sreelakshmi and G. Sarojamma. MHD heat and mass transfer flow over a stretching wedge with convective boundary condition and thermophoresis. Procedia Engineering, 127:963-969, 2015.
- [2] A.J. Chamkha, M. Mujtaba M, A. Quadri and C. Issa C. Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink. Heat and Mass Transfer, 39(4):305-312, 2003.
- [3] D. Pal and H. Mondal. Influence of temperature-dependent viscosity and thermal radiation on MHD forced convection over a non-isothermal wedge. Applied Mathematics and Computation, 212(1):194-208, 2009.
- [4] L. Zheng, J. Niu, X. Zhang and Y. Gao. MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump. Mathematical and Computer Modelling, 56(5-6):133-144, 2012.
- [5] A.T.M.M. Rahman, M.S. Alam and M.K. Chowdhury. Thermophoresis particle deposition on unsteady two-dimensional forced convective heat and mass transfer flow along a wedge with variable viscosity and variable Prandtl number. International Communications in Heat and Mass Transfer, 39(4):541-550, 2012.
- [6] H. Bararnia, E. Ghasemi, S. Soleimani, A.R. Ghotbi and D.D. Ganji. Solution of the Falkner-Skan wedge flow by HPM-Pade method. Advances in Engineering Software, 43(1):44-52, 2012.
- [7] I. Muhaimin, R. Kandasamy, A.B. Khamis and R. Roslan. Effect of thermophoresis particle deposition and chemical reaction on unsteady MHD mixed convective flow over a porous wedge in the presence of temperature-dependent viscosity. Nuclear Engineering and Design, 261:95-106, 2013.
- [8] A.T.M.M. Rahman, M.S. Alam, M.A. Alim and M.K. Chowdhury. Unsteady MHD forced convective heat and mass transfer flow along a wedge with variable electric conductivity and thermophoresis. Procedia Engineering, 56:531-537, 2013.
- [9] K.V. Prasad, P.S. Datti and K. Vajravelu. MHD mixed convection flow over a permeable nonisothermal wedge. Journal of King Saud University – Science, 25(4):313-324, 2013.
- [10] I. Muhaimin, R. Kandasamy, A.B. Khamis and R. Rozaini. Influence of thermophoresis particle deposition and chemical reaction on unsteady non-Darcy MHD mixed convective flow over a porous wedge in the presence of temperature-dependent viscosity. Journal of Mechanical Science and Technology, 27(5):1545-1555, 2013.
- [11] D. Pal and H. Mondal. Influence of thermophoresis and Soret-Dufour on magneto-hydrodynamic heat and mass transfer over a non-isothermal wedge with thermal radiation and Ohmic dissipation. Journal of Magnetism and Magnetic Materials, 331:250-255, 2013.
- [12] M. Ganapathirao, R. Ravindran and I. Pop. Non-uniform slot suction (injection) on an unsteady mixed convection flow over a wedge with chemical reaction and heat generation or absorption. International Journal of Heat and Mass Transfer, 67:1054-1061, 2013.
- [13] M.M. Rahman, M.A. Al-Lawatia, I.A. Eltayeb and N. Al-Salti. Hydromagnetic slip flow of water based nanofluids past a wedge with convective surface in the presence of heat generation (or) absorption. International Journal of Thermal Sciences, 57:172-182., 2012.
- [14] R. Kandasamy, I. Muhaimin, A.B. Khamis and R.B Roslan. Unsteady Hiemenz flow of Cunanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation: Lie group transformation. International Journal of Thermal Sciences, 65:196-205, 2013.
- [15] L. Zheng, C. Zhang, X. Zhang and J. Zhang. Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. Journal of the Franklin Institute, 350(5):990-1007, 2013.
- [16] R. Kandasamy, I. Muhaimin and A.K. Rosmila. The performance evaluation of unsteady MHD non-Darcy nanofluid flow over a porous wedge due to renewable (solar) energy. Renewable Energy, 64:1-9, 2014.
- [17] S. Aiboud and S. Saouli. Entropy analysis for viscoelastic magnetohydrodynamic flow over a stretching surface. International Journal of Non-Linear Mechanics, 45(5):482-489, 2010.
- [18] O.D. Makinde O.D.: Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. International Journal of Exergy, 10(2):142-154, 2012.
- [19] F. Hedayati, A. Malvandi and D.D. Ganji. Second-law analysis of fluid flow over an isothermal moving wedge. Alexandria Engineering Journal, 53(1):1-9, 2014.
- [20] N. Dalir. Numerical study of entropy generation for forced convection flow and heat transfer of a Jeffrey fluid over a stretching sheet. Alexandria Engineering Journal, 53(4):769-778, 2014.
- [21] N. Dalir, M. Dehsara and S.S. Nourazar. Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet. Energy, 79:351-362, 2015.
- [22] M.S. Alam, M. Asiya-Khatun, M.M. Rahman and K. Vajravelu. Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/ shrinking wedge with variable Parndtl and Schmidt numbers. International Journal of Mechanical Sciences, 105:191-205, 2016.
- [23] J.Y. San,W.M. Worek and Z. Lavan. Entropy generation in convective heat transfer and isothermal convective mass transfer. Journal of Heat Transfer, 109(3):647-652, 1987.
- [24] M. Magherbi, H. Abbassi, N. Hidouriand A. Ben-Brahim. Second law analysis in convective heat and mass transfer. Entropy, 8(1):1-17, 2006.
- [25] Noghrehabadi A., Saffarian M.R., Pourrajab R., Ghalambaz M.: Entropy analysis for nanofluid flowover a stretching sheet in the presence of heat generation/absorption and partial slip. Journal of Mechanical Science and Technology, 2013, Vol. 27, No. 3, pp. 927-937.
- [26] M.Z. Salleh, R. Nazar, N.M. Arifin and I. Pop. Numerical solutions of forced convection boundary layer flow on a horizontal circular cylinder with Newtonian heating. Malaysian Journal of Mathematical Sciences, 5(2):161-184, 2011.
- [27] W. Ibrahim, B. Shankar and M.M. Nandeppanavar. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. International Journal of Heat and Mass Transfer, 56(1-2):1-9, 2013.
- [28] B. Jalilpour, S. Jafarmadar, D.D. Ganji, A.B. Shotorban and H.Taghavifar. Heat generation/ absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux. Journal of Molecular Liquids, 195:194-204, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb914d36-a1a0-4759-882f-bce7e315815b