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Abstract: The paper deals in the conceptual way with 
the problem of extracting fuzzy classification rules from 
the three-way data meant in the sense of Sato and Sato 
[7]. A novel technique based on a heuristic method of 
possibilistic clustering is proposed. A description of basic 
concepts of a heuristic method of possibilistic clustering 
based on concept of an allotment is provided. A prepro-
cessing technique for three-way data is shown. An ex-
tended method of constructing fuzzy classification rules 
based on clustering results is proposed. An illustrative ex-
ample of the method’s application to the Sato and Sato’s 
data [7] is provided. An analysis of the experimental re-
sults obtained with some conclusions are given.

Keywords: three-way data, possibilistic clustering, fuzzy 
cluster, typical point, fuzzy rule

1. Introduction
Some remarks on fuzzy inference systems and 

a brief review of methods of extracting fuzzy classi-
fication rules based on fuzzy clustering are consid-
ered in the first subsection. The second subsection 
includes a discussion of basic types of the uncertainty 
of the data and specifies the purpose of the paper.

1.1. Preliminary Remarks
Fuzzy inference systems are presumably the best 

known and most popular applications of fuzzy logic 
and fuzzy sets theory. They can be employed to perform 
classification tasks, process simulation and diagnosis, 
online decision support and process control, to name 
a few areas. So, the problem of generation of fuzzy 
classification rules (to be called fuzzy rules here, for 
brevity) is one of the most relevant problems in the 
development of fuzzy inference systems.

There are a number of approaches to learning 
fuzzy rules from data, for instance based on various 
techniques of evolutionary or neural computing, 
mostly aiming at the optimization of parameters of 
fuzzy rules. On the other hand, fuzzy clustering seems 
to be a very appealing and useful method for learning 
fuzzy rules since there is a close and canonical 
connection between fuzzy clusters and fuzzy rules. 
The idea of deriving fuzzy classification rules from 
data can be formulated as follows: the training data 

set is divided into homogeneous groups and a fuzzy 
rule is associated with (characterizing) each group. 

Fuzzy clustering procedures are exactly pursuing 
this strategy: a fuzzy cluster is represented by a cluster 
center and the membership degree of a datum to the 
cluster is decreasing with an increasing distance 
to the cluster center. So, each fuzzy rule of a fuzzy 
inference system can be characterized by a typical 
point and a membership function that is decreasing 
with an increasing distance to the typical point.

Let us consider some methods for extracting fuzzy 
rules from the data using fuzzy clustering algorithms. 
Some basic definitions should first be given.

Suppose that the training set contains n data pairs. 
Each pair is made up of a m1 – dimensional input 
vector and a ñ -dimensional output vector. We assume 
that the number of rules in the rule base of the fuzzy 
inference system is ñ . A Mamdani type [5] rule l  
within the fuzzy inference system is written as follows:
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where 1t
lB , },,{ 11 1 mt K∈  and l

lC , },,{ cl K1∈  are fuzzy 
sets that define an input and output space partitioning. 

A fuzzy inference system which is described by 
a set of fuzzy rules of the form (1) is a multiple inputs, 
multiple outputs (MIMO) system. Note that any fuzzy 
rule of the form (1) can be presented by c rules of the 
multiple inputs single output (MISO) type:
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Let 1t
lB  be characterized by its membership 

function )ˆ( 1
1

t
B

xt
l

γ . This membership function can be 
triangular, Gaussian, trapezoidal, or of any other 
suitable shape. In this paper, we consider the 
trapezoidal and triangular membership functions 
which are of a particular relevance for applications.

Fuzzy classification rules can be obtained directly 
from fuzzy clustering results. In general, a fuzzy 
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clustering algorithm aims at minimizing the objective 
function [1]
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where 1
1

m
nxxX ℜ⊆= },,{ K  is the data set, c is the 

number of fuzzy clusters lA , cl ,,K1= , in the fuzzy c 
-partition P, ],[ 10∈liυ  is the membership degree of 
object ix  to fuzzy cluster lA , 1ml ℜ⊆τ  is a prototype 
for a fuzzy cluster lA , ),( l

ixd τ  is a distance between 
the prototype lτ  and object ix , and the parameter 

1>γ  is an index of fuzziness. The selection of the val-
ue of γ  determines whether the cluster tend to be 
more crisp or fuzzy. 

The membership degrees can be calculated as fol-
lowing 
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and the prototypes can be obtained from the formula
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The expressions (6) and (7) are clearly the neces-
sary conditions for (3) to have a local minimum. How-
ever, the condition (5) is hard to satisfy for obvious 
reasons. So, a possibilistic approach to clustering was 
proposed by Krishnapuram and Keller [4]. In particu-
lar, the objective function (3) is replaced by
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subject to the constraint of a possibilistic partition
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where c is the number of fuzzy clusters lA , cl ,,K1= , 
in the possibilistic partition Y, ],[ 10∈liµ  is the possi-
bilistic memberships which are typicality degrees, 

1ml ℜ⊆τ  is a prototype for the fuzzy cluster lA , ),( l
ixd τ  

is a distance between the prototype lτ  and object ix , 
and the parameter 1>ψ  is meant analogously as the 
index of fuzziness. 

The degrees of typicality can be calculated as fol-
lows:
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and the parameters lη , cl ,,1 K= , are derived by
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where 1=K .

The principal idea of extracting fuzzy classification 
rules based on fuzzy clustering is as follows (cf. 
Höppner, Klawonn, Kruse and Runkler [2]). Each 
fuzzy cluster is assumed to be assigned to one class 
for classification and the membership degrees of the 
data to the clusters determine the degrees to which 
they can be classified as members of the correspond-
ing classes. So, with a fuzzy cluster that is assigned to 
the some class we can associate a linguistic rule. The 
fuzzy cluster is projected into each single dimension 
leading to a fuzzy set defined in the real line. From a 
mathematical point of view, the membership degree 
of the value 1ˆ tx  to the 1t -th projection )ˆ( 1

1
t

B
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l
γ  of 

the fuzzy cluster lA , },,1{ cl K∈  is the supremum 
over the membership degrees of all vectors with 1ˆ tx  
as 1t -th component to the fuzzy cluster, i.e.
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in the possibilistic case. An approximation of the fuzzy 
set by projecting only the data set and computing the 
convex hull of this projected fuzzy set, or approximat-
ing it by a trapezoidal or triangular membership func-
tion, is used for the rules obtained [2].

The objective function based fuzzy clustering al-
gorithms are the most widespread methods in fuzzy 
clustering. However, they may be sensitive to the 
selection of an initial partition, and the fuzzy rules 
sought may depend on the selection of the fuzzy clus-
tering method employed. In particular, the GG (Gath-
Geva) algorithm and the GK (Gustafsson-Kessel) algo-
rithms of fuzzy clustering are recommended in [2] for 
the generation of fuzzy rules. All algorithms of pos-
sibilistic clustering are also the objective functions 
based algorithms.

On the other hand, a heuristic approach to possi-
bilistic clustering was outlined by Viattchenin [8] and 
then further developed in next publications. More-
over, a method for an automatic generation of fuzzy 
inference systems using heuristic possibilistic clus-
tering was outlined by Viattchenin [13]. This method 
was extended for the case of the interval-valued data 
in [14]. 

1.2. Types of Clustering Structures 
Most fuzzy clustering techniques are designed 

for handling crisp data augmented with their class 
membership degrees. However, the data can be un-
certain. The initial data to be processed by clustering 
algorithms may be characterized y different types of 
uncertainty. For example, a brief review of uncertain 
data clustering methods is given in [11]. An interval 
uncertainty of the initial data is a basic type of uncer-
tainty in clustering. 

The interval valued data are a particular case of the 
three-way data as meant by Sato and Sato [7]. The cluster-
ing problem for the case of the three-way data can be for-
mulated as follows [7, 11]. Let nX x x1{ ,..., }=  be a set of 
objects, where objects are indexed by i, i n1, ,= K ; each ob-
ject ix  is described by 1m  attributes, indexed by t1 , 
t m1 11, ,= K , so that an object ix  can be represented by a 
vector t m

i i i ix x x x1 1 1( , , , , )= K K ; each attribute tx 1ˆ , 
t m1 11, ,= K , can be characterized by m2  values of binary 
attributes, so that t t t t t m

i i i ix x x x(1) ( ) ( )1 1 1 2 1 2ˆ ˆ ˆ ˆ( , , , , )= K K .
Therefore, the three-way data can be represented as 
follows: 

 
t t

n m m iX x ( )1 2
1 2

ˆ ˆ[ ]× × = , i n1, ,= K , 

  t m1 11, ,= K , t m2 21, ,= K . (14)

In other words, the three-way data are the data 
which are observed by the values of m1  attributes 
with respect to n  objects for m2  situations. The pur-
pose of the clustering is to classify the set nX x x1{ ,..., }=  
into c  fuzzy clusters and the number of clusters c  
can be unknown because it can depend on the situ-
ation.

The initial data matrix (14) can be represented as 
a set of m2  matrices t t

n m iX x2 1
1

ˆ ˆ[ ]× = , i n1, ,= K , 
t m1 11, ,= K  and a “plausible” number c  of fuzzy clus-

ters can be different for each matrix t t
n m iX x2 1

1
ˆ ˆ[ ]× = , 

t m2 2{1, , }∈ K . The structure of clustering of the data 
set depends clearly on the type of the initial data. 

Three types of the clustering structures were de-
fined by Viattchenin [16]. First, if the number of clus-
ters c  is constant for each matrix t t

n m iX x2 1
1

ˆ ˆ[ ]× = , 
t m2 2{1, , }∈ K , and the coordinates of prototypes 

ñ1{ , , }τ τK  of the clusters ñA A1{ , , }K  are constant, 
then the clustering structure is called stable. Second, 
if the current number of clusters c  is constant for 
each matrix t t

n m iX x2 1
1

ˆ ˆ[ ]× = , t m2 2{1, , }∈ K , and the coor-
dinates of prototypes of the clusters are not constant, 
then the clustering structure is called quasi-stable. 
Third, if the number of clusters c  is different for the 
matrices t t

n m iX x2 1
1

ˆ ˆ[ ]× = , t m2 21, ,= K , then the cluster-
ing structure is called unstable. 

The detection of the most plausible fuzzy clusters 
in the clustering structure sought for the uncertain 
data set X can be considered as a final goal of clas-
sification and the construction of the set of values of 
the most possible number of fuzzy clusters with their 
corresponding possibility degrees is an important 
step in this way. The method of discovering a unique 
clustering structure which corresponds to most natu-
ral allocation of objects among fuzzy clusters for the 
uncertain data set was proposed by Viattchenin [16]. 

The main goal of this paper is to present the idea 
of a novel approach to extracting fuzzy rules from the 
three-way data. The contents of this paper is as fol-
lows: in the second section the basic concepts of the 
heuristic approach to possibilistic clustering are pre-
sented, a preprocessing technique for the three-way 
data is given and a technique of prototyping fuzzy 
classification rules from the three-way data based on 
the heuristic possibilistic clustering is proposed. In 
the third section an illustrative example of applica-
tion of the proposed technique to Sato and Sato’s [7] 
three-way data set is given, and in the fourth section 
some conclusions are formulated.

2. A Novel Approach to Extracting Fuzzy 
Rules from the Three-way Data
In the first subsection some basic concepts of 

the heuristic approach to possibilistic clustering are 
discussed. The second subsection includes some re-
marks on the preprocessing of the three-way data. 
A technique of extracting fuzzy rules from the three-
way data is described in the third subsection.

2.1. Basic Concepts of the Heuristic Method 
of Possibilistic Clustering 

Heuristic algorithms of fuzzy clustering are 
characterized by a low level of complexity and a high 
level of essential clarity. Some heuristic clustering 
algorithms are based on the definition of the concept 
of a cluster and the aim of these algorithms is to detect 
cluster that conform to a given definition. Due to 
Mandel [6] such algorithms can be called algorithms 
of direct classification or direct clustering algorithms.

An outline for a new heuristic method of fuzzy 
clustering was presented by Viattchenin [8] where 
a basic version of a direct clustering algorithm was 
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described, A version of the algorithm that is called the 
D-AFC(c)-algorithm was given in [9]. The D-AFC(c)-
algorithm can be considered as a direct algorithm of 
possibilistic clustering. This fact was demonstrated in 
[9]. The D-AFC(c)-algorithm is the basis of an entire 
family of heuristic algorithms of possibilistic cluster-
ing. The heuristic approach to possibilistic clustering 
was further developed in other publications. 

The direct heuristic algorithms of possibilistic 
clustering can be divided into two types: relational 
versus prototype-based. In particular, the family of 
direct relational heuristic algorithms of possibilistic 
clustering includes:

The D-AFC(c)-algorithm via the construction of an 
allotment among an a priori given number c of par-
tially separate fuzzy clusters [8];

The D-AFC-PS(c)-algorithm via the construction 
of an allotment among an a priori given number c of 
partially separate fuzzy clusters in the presence of la-
beled objects [9];

The D-PAFC-algorithm via the construction of an 
allotment among an unknown number of at least c 
fully separate fuzzy clusters [12].

On the other hand, the family of direct prototype-
based clustering procedures, proposed in [10] in-
cludes:

The D-AFC-TC-algorithm via the construction of an 
allotment among an unknown number c of fully sepa-
rate fuzzy clusters;

The D-PAFC-TC-algorithm via the construction of 
a principal allotment among an unknown minimal 
number of at least c fully separate fuzzy clusters;

The D-AFC-TC(α)-algorithm via the construction 
of an allotment among an unknown number c of fully 
separate fuzzy clusters with respect to the minimal 
value α  of a tolerance threshold.

Let us remind some basic concepts of the heuristic 
method of possibilistic clustering in question. The 
concept of a fuzzy tolerance is the basis for the con-
cept of a fuzzy α -cluster. That is why the definition of 
a fuzzy tolerance must be considered in the first place.

Let nX x x1{ ,..., }=  be an initial set of elements and 
T X X: [0,1]× →  be some binary fuzzy relation on X 
with T i jx x( , ) [0,1]∈m , i jx x X,∀ ∈ , being its member-
ship function. A fuzzy tolerance is a fuzzy binary in-
transitive relation that is symmetric

 T i j T j ix x x x( , ) ( , )µ = µ , i jx x X,∀ ∈ , (15)

and reflexive

 T i ix x( , ) 1µ = , ix X∀ ∈ . (16)

The notions of a powerful fuzzy tolerance, a feeble 
fuzzy tolerance and a strict feeble fuzzy tolerance were 
considered by Viattchenin [8] as well. In this context the 
classical fuzzy tolerance in the sense of (15)–(16) has 
been called an usual fuzzy tolerance in [8]. However, the 
essence of the method considered here does not depend 
on any particular kind of a fuzzy tolerance, and is de-
scribed for any fuzzy tolerance T.

Let α  be an α -level value of the fuzzy tolerance T, 
(0,1]∈a . Columns or rows of the fuzzy tolerance matrix 

are fuzzy sets nA A1{ ,..., }  on X. Let lA , l n{1, , }∈ K ,
be a fuzzy set on X  with i

Al x( ) [0,1]∈m , ix X∀ ∈ , be-
ing its membership function. The α -level fuzzy set { }l

i i i i
A Al lA x x x x X( ) ( , ( ))| ( ) ,α = µ µ ≥ α ∈  is a fuzzy α

-cluster. So, l lA A( )α ⊆ , (0,1]α ∈ , l nA A A1{ , , }∈ K , and 
i

Al x( )m  is the membership degree of the element 
ix X∈  for some fuzzy α -cluster lA( )α , (0,1]α ∈ , 

l n{1, , }∈ K . This mem- bership degree will 
be denoted liµ  for brevity in further considerations. 
A value of α  is a tolerance threshold of fuzzy α -clus-
ter elements. The membership degree of an element 

Xxi ∈  for some fuzzy α -cluster lA( )α , (0,1]α ∈ , 
l n{1, , }∈ K , can be defined as 

 

l
i i

A
li

l x x A
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( ),
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αµ ∈µ = 
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where the α -level of a fuzzy set lA  ,
l

i i
AlA x X x{ | ( ) }α = ∈ µ ≥ α , (0,1]α ∈ , is the support of 

the fuzzy α -cluster lA( )α . 
The value of the membership function of each ele-

ment of the fuzzy α -cluster is the degree of similarity 
of the object to some typical object of the fuzzy α
-cluster. Moreover, the membership degree defines a 
possibility distribution function for some fuzzy α
-cluster lA( )α , (0,1]α ∈ , and this possibility distribu-
tion function is denoted )( il xπ . 

Let nA A1
( ) ( ){ ,..., }α α  be the family of fuzzy α -clusters 

for some α . The point l l
e Aατ ∈ , for which 

 
l
e lixi

argmaxτ = µ , l
ix Aα∀ ∈  (18)

is called a typical point of the fuzzy α -cluster lA( )α , 
(0,1]α ∈ , l n[1, ]∈ . Obviously, a fuzzy α -cluster can 

have several typical points. That is why the symbol e 
is the index of a typical point. 

Let l
zR X A l c c n( )( ) { | 1, , 2 }α

α= = ≤ ≤  be a set of 
fuzzy α -clusters for some value of the tolerance 
threshold α  which are generated by a fuzzy tolerance 
T from the initial set of elements nX x x1{ ,..., }= . If the 
condition 

 

c

li
l 1

0
=

µ >∑ , ix X∀ ∈  (19)

is met for all lA( )α , l c1,= , c n≤ , then this set is an al-
lotment of elements of the set nX x x1{ ,..., }=  among 
fuzzy α -clusters lA l c c n( ){ , 1, ,2 }α = ≤ ≤  for some val-
ue of the tolerance threshold α . It should be noted 
that several allotments zR X( )α  can exist for some tol-
erance threshold α . The number of allotments zR X( )α  
depend on the initial data structure. That is why the 
symbol z is the index of an allotment. 

Allotment l
IR X A l n( )( ) { | 1, , (0,1]}α

α= = α ∈  of the 
set of objects among n fuzzy α -clusters for some 
threshold α  is an initial allotment of the set 

nX x x1{ ,..., }= . In other words, if the initial data are 
represented by a matrix of some fuzzy T, then rows or 
columns of the matrix are fuzzy sets lA X⊆ , l n1,...,= , 
and α -level fuzzy sets lA( )α , l n1,...,= , (0,1]∈a , are 
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fuzzy α -clusters. These fuzzy α -clusters constitute 
an initial allotment for some tolerance threshold and 
they can be considered as clustering components.

If some allotment l
zR X A l n c n( )( ) { | 1,..., , }α

α= = ≤  is 
considered appropriate for the problem considered, 
then this allotment is called an adequate allotment. In 
particular, if the conditions

 

c
l

l

card A card X
1

( ) ( )α
=

≥∑ , l
zA R X( ) ( )α

α∀ ∈ , 

 (0,1]α ∈ , zcard R X c( ( ))α = , (20)

and

 
l mcard A A w( )α α∩ ≤ , l mA A( ) ( ),α α∀ , 

 
 l m≠ , (0,1]∈a , (21)

are met for all fuzzy α -clusters lA( )a , l n1,...,= , of 
some allotment l

zR X A l n c n( )( ) { | 1,..., , }α
α= = ≤ , then 

this allotment is the allotment among particular sepa-
rate fuzzy α -clusters and w n{0, , }∈ K  is the maxi-
mum number of elements in the intersection area of 
different fuzzy α -clusters. If w 0=  in the conditions 
(20) and (21), then this allotment is the allotment 
among fully separate fuzzy α -clusters.

An adequate allotment zR X( )α  for some value of 
the tolerance threshold (0,1]∈a  is a family of fuzzy 
α -clusters which are elements of the initial allotment 

IR X( )α  for the value of α , and the family of fuzzy 
α -clusters satisfies the conditions (20) and (21). The 
problem consists in the selection of an unique ade-
quate allotment R X( )∗  from the set B of adequate al-
lotments, zB R X{ ( )}α= , which is the class of possible 
solutions of the specific classification problem and 

zB R X{ ( )}α=  depends on the parameters of the classifi-
cation problem. In particular, the number c of fuzzy 
α -clusters is a parameter of the D-AFC(c)-algorithm. 

The selection of the unique adequate allotment 
among a fixed number c of fuzzy α -clusters from the 
set zB R X{ ( )}α=  of adequate allotments c is to be 
made on the basis of an evaluation of allotments. The 
criterion

 

nc

z li
l il

l
F R X c

n1 1

1( ( ), )α

= =

α = µ − α ⋅∑ ∑ , (22)

where c is the number of fuzzy α -clusters in the allot-
ment zR X( )α  and l

ln card A( )α= , l
zA R X( ) ( )∈ a

a , is the 
number of elements in the support of the fuzzy  
α -cluster lA( )a , can be used for evaluation of allot-
ments.

The maximum value of the criterion (22) corre-
sponds to the best allotment of objects among c fuzzy 
α -clusters. So, the classification problem can be for-
mally characterized as the determination of a solution 
R X( )∗  satisfying

 
z

R X Bz
R X F R X

( )
( ) arg max ( ( ), )∗ α

∈α
= α ,  (23)

where zB R X{ ( )}α=  is the set of adequate allotments 
corresponding to the formulation of a specific classifi-
cation problem considered.

Thus, the problem of cluster analysis can be de-
fined as the problem of discovering an allotment 
R X( )∗ , resulting from the classification process, and 
the detection of a fixed number c of fuzzy α -clusters 
can be considered as the goal of classification. A de-
scription of the corresponding D-AFC(c)-algorithm is 
presented in [8, 9, 11, 15].

The most “plausible” number ñ  of fuzzy α -clus-
ters in the allotment R X( )∗  sought can be considered 
as an index for the cluster validity problem for the D-
AFC(c)-algorithm. Different validity measures for the 
D-AFC(c)-algorithm were proposed in [15]. In partic-
ular, the measure of separation and compactness of 
the allotment can be defined in the following way:

,  (24)

where Θ  is a set of elements jx , j n{1, , }∈ K , in all 
intersection areas of different fuzzy α -clusters, and 
the density of fa uzzy α -cluster, lD A( )( )α , is defined in 
[15] as follows: 

 

l
li

l x Ali

D A
n( )
1( )α

∈ α

= µ∑ , (25)

where l
ln card A( )α= , lA R X( ) ( )∗

α ∈  and membership 
degree  liµ  is defined by the formula (17). The mea-
sure of separation and compactness of an allotment, 

MSCV R X c( ( ); )∗ , increases when c is closer to n. That is 
why the optimum value of c is obtained by minimizing 

MSCV R X c( ( ); )∗  over  where min2 c≤  
and nc <max . So, the choice of the measure (24) can 
be interpreted as the search for an optimal number ñ  
of fuzzy α -clusters in the allotment R X( )∗  sought.

2.2. Remarks on the Preprocessing of Three-way 
Data 

The D-AFC(c)-algorithm can be applied directly to the 
data given as a fuzzy tolerance matrix T i jT x x[ ( , )]= m ,
i j n, 1, ,= K . This means that it can be used by choosing 
a suitable metric to measure the similarity. The three-
way data can be normalized as follows:

 

t t t t
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,( )
( ) ( )

,,

1 2 1 2
21 2

1 2 1 2
22

ˆ ˆmin

ˆ ˆmax min

−
=

−
.  (26)

So, each object ix , i n1, ,= K , from the initial set 
nX x x1{ , , }= K  can be considered as a type-two fuzzy 

set and t t t t
i xix x( ) ( )1 2 1 2( )= µ , i n1, ,= K ; t m1 11, ,= K , 

t m2 21, ,= K , t t t
tx x( )1 2 2
1 ( ) [0,1]= µ ∈ , t m1 11, ,= K , 

t m2 21, ,= K ,are its membership functions. In the case 
of three-way data each object ix , ni ,,1 K=  can be rep-
resented as a matrix t t

i m m iX x ( )
( )

1 2
1 2 [ ]× = , t m1 11, ,= K , 

t m2 21, ,= K . 
Dissimilarity coefficients between the objects can 

be constructed on the basis of generalizations of dis-
tances between fuzzy sets [11] and these generaliza-
tions take into account dissimilarities between the 
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attributes of objects and the situations. In particular, 
a generalization of the squared normalized Euclidean 
distance for type-two fuzzy sets can be described by

, (27)

for all i j n, 1, ,= K . In the case of m2 1= , the formula 
(27) can be rewritten as the usual squared normal-
ized Euclidean distance [3]:

 
( )

m
t t

i j x x
t

i jx x x x
m

2

11

1
1 1

1

1( , ) ( ) ( )
=

ε = µ − µ∑ , 

 i j n, 1, ,= K . (28)

The fuzzy tolerance matrix I i jI x x[ ( , )]= µ , 
i j n, 1, ,= K , can be obtained by the application of the 
complement operation

 
),(1),( jiIjiT xxxx µµ −= , i j n, 1, ,∀ = K ,  (29)

to the fuzzy intolerance matrix I i jI x x[ ( , )]= µ .
However, the value 2m  can be different for differ-

ent attributes tx 1ˆ , t m1 1{1, , }∈ K , or the value m2  of 
grades for a fixed attribute tx 1ˆ , t m1 1{1, , }∈ K  can be 
different for different objects ix , i n{1, , }∈ K . So, each 
object ix , i n1, ,= K , cannot be presented as a matrix 

t t
i m m iX x ( )

( )
1 2

1 2 [ ]× = , t m1 11, ,= K , t m2 21, ,= K , because 
the value m2 , which is general for all attributes tx 1ˆ , 
t m1 1{1, , }∈ K , must be established. In these cases a 
general value m2  can be defined as follows:

 
t

t
m m( )

2 2
1

1
max= , t m1 11, ,= K , (30)

where the number of grades of each attribute tx 1ˆ , 
t m1 1{1, , }∈ K , is denoted by tm( )

2
1 . However, values 

t t
ix ( )1 2 , i n{1, , }∈ K  may be unknown for some objects 
ix X∈ , i n{1, , }∈ K . In such a case, an unknown val-

ues t t
ix ( )1 2 , i n{1, , }∈ K , can be defined heuristically as 

follows:

t t t
i t

x t( ) ( )
2

1 2 1
1

max= , i n{1, , }∈ K , tt m( )
2 2

11, ,= K . (31)

Obviously, the preprocessing method for the 
three-way data can be very simply generalized for the 
case of p -way data, for p >3.

2.3. A Method of Fuzzy Rules Extraction from 
the Three-way Data 

Let us consider a method of extracting fuzzy clas-
sification rules based on a heuristic method of pos-
sibilistic clustering [13]. In the following, we will con-
sider that the Mamdani type fuzzy inference system 
is a multiple inputs, multiple outputs system (MIMO). 

The antecedent of a fuzzy rule in the fuzzy infer-
ence system defines a decision region in the 1m -di-
mensional feature space. Let us consider a fuzzy rule 
(1) where 1t

lB , 11 ,,1 mt K= , },,1{ cl K∈ , is a fuzzy 

set associate with the attribute variable 1ˆ tx . Let 1t
lB  

be characterized by its trapezoidal membership func-
tion )ˆ( 1

1
t

B
xt

l
γ  which is presented in Fig. 1.

So, the fuzzy set t
lB 1  can be defined by four pa-

rameters, t tt t t
ll l l lB a m m a( )( ) ( ) ( )

1 11 1 1( , , , )= . A triangular fuzzy 
set ),,( 1111

)()()(
t
l

t
l

t
l

t
l amaB =  can be considered as a par-

ticular case of the trapezoidal fuzzy set where 
11
)()(

t
l

t
l mm = . The idea of deriving fuzzy rules from 

fuzzy α -clusters was outlined by Viattchenin [13] 
and this method can be extended to the case of the 
three-way data as follows. We apply the D-AFC(c)-al-
gorithm to the given three-way data and then obtain 
for each fuzzy α -cluster lA( )α , l c{1, , }∈ K  a kernel 

lK A( )( )α  and a support lAα . The value of the tolerance 
threshold (0,1]α ∈ , which corresponds to an allot-
ment cR X A A1

( ) ( )( ) { , , }∗
α α= K , is an additional result of 

classification. The situation of the three-way data can 
be described by the expression t t t

i i ix x x(min) (max)1 1 1ˆ ˆ ˆ( , )= , 
t m1 11, ,= K , i n1, ,= K . In particular, the interval 

t t
l lx x(min) (min)

( )min ( )max
1 1ˆ ˆ[ , ]  of values of each attribute 

t t tx x x(min) (max)1 1 1ˆ ˆ ˆ( , )= , t m1 1{1, , }∈ K  for the support 
lAα  should be calculated. We calculate the interval 
t t
l lx x(min) (min)

( )min ( )max
1 1ˆ ˆ[ , ]  of values of each attribute tx 1ˆ , 

t m1 1{1, , }∈ K , for the support lAα . The value t
lx (min)

( )min
1ˆ  

can be obtained ass

 

t t
l

x Ali
x x(min) (min)

( )min
1 1ˆ ˆmin

∈ α
= , 

  t m1 1{1, , }∀ ∈ K , l c{1, , }∀ ∈ K , (32)

and the value t
lx (max)

( )max
1ˆ , t m1 1{1, , }∈ K , as

 

t t
l

x Ali
x x(max) (max)

( )max
1 1ˆ ˆmax

∈ α
= , 

  t m1 {1, , }∀ ∈ K , l c{1, , }∀ ∈ K . (33)

The parameter t
la( )
1  can be obtained from

 

t
l

B
t
l

x (min)
( )min
1

1
ˆ( ) (1 )γ = − α , t

l
B

t
l

a( )
1

1
( ) 0γ = , (34)

Fig. 1. A trapezoidal membership function for an ante-
cedent fuzzy set
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and the parameter t
la( )
1  from

 

 

t
l

B
t
l

x (max)
( )max
1

1
ˆ( ) (1 )γ = − α , t

l
B

t
l

a( )
1

1
( ) 0γ = . (35)

We calculate the value t
lx (min)

( )
1ˆ  for all typical points 

l l
e K A( )( )ατ ∈  of the fuzzy α -cluster lA( )α , l c{1, , }∈ K , 

as follows:

 

t t
l

K Al l
e

x x(min) (min)
( )

( )

1 1

( )

ˆ ˆmin
τ ∈ α

= , e l{1, , }∀ ∈ K , (36)

and the value t
lx (max)

( )
1ˆ  can be obtained from
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( )
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1 1

( )
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τ ∈ α

= , e l{1, , }∀ ∈ K . (37)

Thus, the parameter t
lm( )
1  can be calculated from

 

 

t t
l l

B B
t t
l l

x m(min)
( ) ( )
1 1

1 1
ˆ( ) ( ) 1γ = γ = , (38)

and the parameter t
lm( )
1  can be obtained as

 

t t
l l

B B
t t
l l

x m(max)
( ) ( )
1 1

1 1
ˆ( ) ( ) 1γ = γ = . (39)

So, the conditions t t
l lx m(min)

( ) ( )
1 1ˆ =  and t t

l lx m(max)
( ) ( )
1 1ˆ =  

are met for all input variables tx 1ˆ , t m1 11, ,= K . 
Let us consider a technique of learning the conse-

quents of the rules. The variables ly , l c1, ,= K , are 
the consequents of the fuzzy rules (1), represented by 
the fuzzy sets l

lC , l c1, ,= K  , with their membership 
functions l

Cl
l

y( )γ . These fuzzy sets l
lC , l c1, ,= K , can

be defined on the interval of membership degrees 
]1,0[  and these fuzzy sets can be presented as fol-

lows: l
l ll

C ( , , ,1)= α µ µ , where α  is the tolerance 

threshold, lil
x Ali
min

∈ α
µ = µ  and l li

x Ali
max

∈ α
µ = µ . This case is

presented in Fig. 2. On the other hand, if l
áA( )  and m

áA( ) ,
l m≠ , are two particularly separated fuzzy α -clus-
ters, then the condition w 0≠  is met in the equation 
(21). So, a fuzzy set  l

m m m
C (0, 1 , 1 , 1 )= − − −m m a  is the 

consequent for the variable my  of the l-th fuzzy rule 
for the case of a low membership degree. The corre-
sponding case is illustrated by Fig. 3. 

Suppose that the membership functions l
Cl
l

y( )γ  
of the fuzzy sets l

lC , l c1, ,= K , are trapezoidal.
The trapezoidal membership functions l

Cl
l

y( )γ  
for the fuzzy sets l

lC , l c1, ,= K , can be constructed on 
the basis of the clustering results. The empty set lAα = ∅,
 l c{1, , }∈ K , can correspond to some output variable ly ,
 l c{1, , }∈ K . So, the empty fuzzy set l

lC  will correspond 
to the output variable ly , l c{1, , }∈ K , and l

Cl
l

y( ) 0γ =  

will be the membership function of the corresponding 
fuzzy set l

lC .

A scheme of rapid prototyping of the fuzzy inference 
system from the three-way data can be described shortly 
as follows: a stationary clustering structure [16] should 
be constructed in the first step and fuzzy rules must be 
derived in the second step using the proposed technique.

3. An Illustrative Example 
The Sato and Sato [7] three-way data are de-

scribed in the first subsection. Illustrative examples 
of data preprocessing are also considered in the first 
subsection. The second subsection includes results of 
numerical experiments for three distance functions.

3.1. The Sato and Sato Three-way Data
The Sato and Sato[7] artificial three-way data are 

a follow-up of a survey on human physical constitu-
tion, involving the height, weight, chest girth and sit-
ting height, which are the measurements of 38 boys 
at three instants, that is, at the age of 13, 14 and 15 
years. These data, which originally appeared in Sato 
and Sato [7], can be rewritten as shown in Table 1.

Fig. 2. A membership function for a consequent fuzzy 
set in a case of a high belonginess

Fig. 3. A membership function for a consequent fuzzy 
set in the case of a low degree of membership
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Table 1. Physical constitution of 38 boys

Boys

Height, cm Weight, kg Chest girth, cm Sitting height, cm

13 
years 
old

14 
years 
old

15 
years 
old

13 
years 
old

14 
years 
old

15 
years 
old

13 
years 
old

14 
years 
old

15 
years 
old

13 
years 
old

14 
years 
old

15 
years 
old

1 147 157 162 40 47 54 70 76 81 80 85 87

2 161 166 167 49 50 52 75 75 79 85 87 88

3 153 159 161 45 48 51 72 75 75 86 90 92

4 155 163 168 51 58 66 77 82 87 85 87 92

5 160 165 167 51 56 61 75 77 82 86 88 89

6 153 159 167 38 43 44 67 70 71 81 84 87

7 166 169 172 67 72 79 86 89 92 89 90 95

8 168 174 175 55 60 65 76 79 81 91 93 95

9 142 149 157 35 39 46 69 68 75 75 78 82

10 151 160 165 44 51 57 72 78 80 79 85 89

11 164 167 169 55 58 65 77 79 80 88 89 93

12 153 163 168 42 46 53 70 73 78 83 88 91

13 148 158 164 41 47 51 72 77 81 78 82 85

14 164 169 171 75 84 88 92 97 102 90 93 95

15 145 151 162 34 39 45 65 68 72 76 80 84

16 151 159 162 51 57 64 80 83 87 81 85 87

17 145 153 162 50 55 59 82 84 82 79 81 86

18 154 163 169 47 53 56 71 75 80 82 86 89

19 156 166 171 48 50 56 73 72 75 81 86 89

20 144 149 157 30 33 37 60 62 66 73 75 79

21 154 164 169 41 49 56 69 76 77 82 88 91

22 155 165 169 43 52 57 71 75 79 82 87 90

23 155 162 166 48 58 60 76 85 84 82 86 89

24 155 162 172 49 55 57 73 76 76 80 84 87

25 156 163 164 48 53 54 76 79 82 81 86 87

26 156 164 172 50 53 56 74 76 79 81 84 87

27 162 168 170 45 48 52 71 71 75 84 88 89

28 147 154 163 37 43 50 71 75 80 79 82 86

29 149 157 166 40 47 53 71 79 78 80 83 87

30 148 155 162 37 41 47 69 70 74 78 81 85

31 156 163 166 52 57 62 75 79 81 83 87 89

32 141 151 159 35 42 48 68 74 79 73 77 82

33 140 147 157 30 34 43 67 70 73 76 77 83

34 146 153 161 49 52 53 76 78 76 80 79 84

35 162 168 161 53 58 53 74 78 76 86 79 84

36 146 158 165 36 44 51 68 75 73 77 85 89

37 141 151 158 41 46 51 71 75 76 76 80 83

38 158 167 171 65 71 79 93 93 90 85 90 91
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Denote the height by x1ˆ , the weight by x2ˆ , the chest 
girth by x3ˆ  and the sitting height by x4ˆ . Each attribute 

tx 1ˆ , t1 1, ,4= K , is observed at three instants (ages), 
t2 1, ,3= K . The value of the t1 -th attribute at the t2
-th moment for the i -th object is denoted by t t

ix ( )1 2ˆ , 
i 1, ,38= K , t1 1, ,4= K , t2 1, ,3= K . The data were pre-
processed according to formulae (26), (27) and (29). 

3.2. Experimental Results 
Let us consider results of the application of the 

proposed technique to the Sato and Sato artificial 
three-way data. The data was processed by the D-
AFC(c)-algorithm with the number of fuzzy clusters 
c 2,3= K , using the measure of separation and com-
pactness of an allotment (24). The performance of the 
validity measure is shown in Fig. 4.

The optimal number of fuzzy clusters is equal 3 
and this number corresponds to the first minimum of 
the measure of separation and compactness of the al-
lotment. The corresponding allotment R X( )∗  among 
three fully separate fuzzy clusters was obtained for 
the tolerance threshold 0.93120α = . The member-
ship functions of three classes of the allotment are 
presented in Fig. 5 and he values which equal zero are 
not shown in this figure. The membership values of 
the first class are represented by +, the membership 

values of the second class are represented by ■, and 
the membership values of the third class are repre-
sented by × .

So, by executing the D-AFC(c)-algorithm for three 
classes, we obtain that the first class is formed by 3 el-
ements, the second class by 7 elements, and the third 
class by 28 elements. The value of the membership 
function of the fuzzy cluster, which corresponds to the 
first class, is maximal for the fourteenth object and is 
equal 0.98298. So, the fourteenth object is a typical 
point of the fuzzy cluster which corresponds to the 
first class. The membership value of the twentieth ob-
ject is equal 0.97888 and this value is maximal for the 
fuzzy cluster which corresponds to the second class. 
Thus, the twentieth object is a typical point of the 
fuzzy cluster which corresponds to the second class. 
The membership function of the third fuzzy cluster is 
maximal for the fifth object and is equal 0.98392. That 
is why the fifth object is a typical point of the fuzzy 
cluster which corresponds to the third class. 

We could see that the boys in the first cluster have 
a good physical constitution through all three years of 
age. Conversely, the boys in the second cluster have 
a poor constitution. The boys who belong to the third 
cluster have a standard constitution. So, the results, 
which are obtained from the D-AFC(c)-algorithm 
are similar to the results, which were obtained by 
Sato and Sato [7] using their multicriteria optimiza-
tion method.

The rule base induced by the proposed technique 
from the clustering result obtained by using the D-
AFC(c)-algorithm can be seen in Fig. 6 – Fig. 8. In par-
ticular, the performance of the fuzzy inference system 
for the thirty-second boy at the first time measure-
ment is presented in Fig. 6.

The total area is zero while using the defuzzifica-
tion procedure for the output variables Class 1 and 

Table 2. Results of performance of the generated fuzzy inference system for the data set

Classes
Times measurement

13 years old 14 years old 15 years old

1 7, 14, 38 7, 14, 38 4, 7, 14, 38

2
1, 2, 6, 9, 10, 12, 13, 15, 18, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
32, 33, 34, 36

1, 6, 9, 15, 20, 28, 30, 32, 33, 36, 37 9, 15, 20, 30, 33, 37

3
1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 16, 

17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 
28, 29, 30, 31, 34, 35, 36, 37

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 
16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 31, 32, 34, 35, 36, 37

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 
15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 

36, 37

Fig. 4. Plot of the mea-
sure of separation and 
compactness for the 
Sato and Sato three-
way data set

Fig. 5. Membership functions of three fuzzy clusters 
obtained from the D-AFC(c)-algorithm



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  8,      N°  2        2014

Articles56

Class 3. That is why the average values of the range 
of the output variables Class 1 and Class 3 are used 
as the output values and these values are equal 0.5. 
These values can be interpreted as uncertain mem-
bership degrees.

The performance of the fuzzy inference system for 
the thirty-second boy at the second time measure-
ment is presented in Fig. 7. It should be noted, that 

at that time the boy belonged to the second and the 
third classes.

The performance of the fuzzy inference system for 
the thirty-second boy at the third time measurement 
is presented in Fig. 8. 

So, we could see that the thirty-second boy has 
a tendency of growth during the period from 14 years 
old to 15 years old.

Fig. 6. The performance of the generated fuzzy inference system for the thirty-second boy at the first time measurement 
(13 years old)

Fig. 7. The graph of performance of the generated fuzzy inference system for the thirty-second boy at the second time 
measurement (14 years old)

Fig. 8. The graph of performance of the generated fuzzy inference system for the thirty-second boy at the third time 
measurement (15 years old)
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The results of the numerical experiment for all 38 
boys at all three times measurement are summarized 
in Table 2.

The Sato and Sato three-way data were classified 
using the fuzzy inference system constructed. Evi-
dently, the results obtained are correlated with the 
results obtained from the D-AFC(c)-algorithm. So, the 
fuzzy inference system is accurate. On the other hand, 
we can observe the trend of development of each boy.

The result which is obtained from the fuzzy infer-
ence system can easily be interpreted. Thus, the ob-
tained model is suitable for the interpretation since 
the consequents of the rules are the same or close to 
the current class labels, such that each rule can be 
taken to describe all classes.

4. Conclusions 
Many techniques to design fuzzy inference systems 

from data are available; basically, they all take advantage, 
explicitly or implicitly, of the property of the fuzzy infer-
ence systems to be the universal approximators. This 
paper presents an extension of an automatic method to 
design fuzzy inference system for classification via heu-
ristic possibilistic clustering. This method can be con-
sidered as an approach to rapid prototyping of the fuzzy 
inference systems for the case of the three-way data. The 
proposed method is simple in comparison with other 
well-known approaches. The results obtained for the 
well=known Sato and Sato three-way data set show the 
effectiveness of the proposed method.

Some approaches, such as those based on the use 
of genetic algorithms or neuro-fuzzy techniques can be 
used for fuzzy rules tuning. On the other hand, a scheme 
of on-line training of the fuzzy inference system can be 
developed. These perspectives for further research are 
of a great interest both from the theoretical and practical 
points of view.
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