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1. INTRODUCTION

Let H be a Hilbert space with inner product (·, ·) linear in the first argument and let
J be a non-trivial fundamental symmetry, i.e., J = J∗, J2 = I, and J 6= ±I.

The space H endowed with the indefinite inner product

[f, g] = (Jf, g) (1.1)

is called a Krein space (H, [·, ·]).
A linear operator H acting in H is called J-self-adjoint if JH = H∗J and

J-symmetric if JH⊆H∗J . The condition of J-symmetricity of H is equivalent to
the relation

[Hf, g] = [f,Hg], f, g ∈ D(H). (1.2)
During last two decades, the theory of J-self-adjoint operators has found successful

applications in studying nonself-adjoint Hamiltonians of PT -symmetric quantum
mechanics (PTQM). The Hamiltonians of PTQM are not self-adjoint with respect to
the initial Hilbert space’s inner product (·, ·) but they possess a certain “more physical
property” of symmetry, which does not depend on the choice of inner product (like
PT -symmetry property, see [6,7] and references therein). Typically, such nonself-adjoint
operators can be interpreted as J-self-adjoint or J-symmetric operators for a suitable
choice of Krein space. However, the self-adjointness of a Hamiltonian H in a Krein
space cannot be satisfactory because it does not guarantee the unitarity of the dynamics
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generated by H. In PTQM-related studies, this problem is solved by finding a new
symmetry represented by a linear operator C and such that the new inner product
(·, ·)C := [C·, ·] ensures the self-adjointness of H in a (possible) new Hilbert space
endowed with (·, ·)C .

The description of a symmetry C for a given nonself-adjoint Hamiltonian H is one
of the key points in PTQM. Because of the complexity of the problem (since C depends
on the choice of H), it is not surprising that the majority of the available formulae
are approximative [8, 11] and the relevant mathematically study of the concept of
C-symmetry is not yet developed well.

The concept of C-symmetry in PTQM can be easily reformulated in the Krein
space setting [1]. The crucial point here is that each operator C in the Krein space
(H, [·, ·]) can be completely determined by an J-orthogonal pair of maximal positive L+
and maximal negative L− subspaces of H, where positivity (negativity) is understood
with respect to the indefinite inner product [·, ·]. The existence of a C-symmetry
for a J-symmetric operator H means that H has a maximal dual pair {L+,L−} of
invariant subspaces. This is an underlying mathematical structure that allows one to
develop mathematically rigorous study of C-symmetries.

It should be noted that operators associated with maximal dual pairs {L+,L−}
in the sense mentioned above have been considered in the mathematical literature
before the development of PTQM. In particular, an unbounded operator C was used
in [5, Example 3.31] as a curious example of a J-self-adjoint and J-positive operator
whose spectrum coincides with C. C-symmetries were also considered in [13, 21] (in
these papers the concepts of positive symmetry and ]-positive ] unitary operators
were used, respectively) in connection with some geometric aspects of Krein spaces
and studies of J-unitary operators. In particular, an explicit formula for operators C
in terms of angular operators was obtained [13].

The present paper can be considered as an introduction to the full-scale theory of
C-symmetries inspired by the development of PTQM, where the concept of operator C
is consistently studied with the use of Krein spaces approach.

This paper is organized as follows. In Section 2, after preliminary results related
to the Krein space theory, we discuss various definitions of operators C which are
typically used in literature. Further, the relation between operators C and the concept
of operator angles is studied and the difference between bounded and unbounded
operators C is explained. Section 3 deals with the case of J-self-adjoint operators with
C-symmetry. We show that J-self-adjoint operators with non-zero resolvent set may
only have a property of bounded C-symmetry, that is equivalent to the similarity of
those operators to self-adjoint ones. Our presentation of Sections 2 and 3 is built in
part on previous works [1, 10,14,17] where some properties of C-operators have been
investigated.

In Section 4, the method of construction of C operators for J-symmetric operators
with complete set of eigenfunctions corresponding to real eigenvalues is presented. We
characterize (possible) nonuniqueness of the corresponding unbounded operators C
with the use of extension theory of symmetric operators. These results were inspired
by [8, 9] where the non uniqueness of unbounded operator C was discovered with the
use of formal methods.
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Finally, we remark that the area of applicability of the theory of C-symmetries
does not restricted to PTQM-related studies. In particular, the concept of C-symmetry
can be useful for the theory of operator differential equations in Krein spaces and for
the solution of operator Riccati equations [14].

In what follows D(H) and kerH denote, respectively, the domain and the kernel
space of a linear operator H. The symbol H � D means the restriction of H onto
a set D. Let H be a complex Hilbert space. Sometimes, it is useful to specify the inner
product (·, ·) endowed with H. In that case the notation (H, (·, ·)) will be used.

2. DEFINITION AND GENERAL PROPERTIES OF OPERATORS C

2.1. ELEMENTS OF THE KREIN SPACE THEORY

Let (H, [·, ·]) be a Krein space with a fundamental symmetry J . For the theory of
Krein spaces and operators acting therein we refer the interested reader to [5].

A (closed) subspace L of the Hilbert space H is called nonnegative, positive,
uniformly positive with respect to the indefinite innner product [·, ·] if, respectively,
[f, f ] ≥ 0, [f, f ] > 0, [f, f ] ≥ α‖f‖2, (α > 0) for all f ∈ L\{0}. Nonpositive, negative
and uniformly negative subspaces are introduced similarly.

In each of the above mentioned classes we can define maximal subspaces. For
instance, a closed positive subspace L is called maximal positive if L is not a proper
subspace of a positive subspace in H. The concept of maximality for other classes is
defined similarly.

Let L+ be a maximal positive subspace. Then its J-orthogonal complement
(i.e., orthogonal complement with respect to the indefinite inner product [·, ·])

L− = L
[⊥]
+ = {f ∈ H : [f, g] = 0, for all g ∈ L+} (2.1)

is a maximal negative subspace of H, and the direct sum

D = L+[+̇]L− (2.2)

is a dense set in the Hilbert space H. The brackets in (2.2) indicates that the subspaces
L+ and L− are J-orthogonal.

Denote
H+ = 1

2(I + J)H, H− = 1
2(I − J)H, (2.3)

where J is the operator of fundamental symmetry which determines indefinite inner
product in (1.1). It is easy to see that the J-orthogonal subspaces H± are maximal
uniformly positive/negative with respect to [·, ·]. Moreover, they are also orthogonal
with respect to the initial inner product (·, ·) and

H = H+[⊕]H−. (2.4)

The decomposition (2.4) is called the fundamental decomposition of H.



68 S. Kuzhel and V. Sudilovskaya

The subspaces L± in (2.2) are maximal positive/negative and their “deviation”
from H± are described by a self-adjoint strong contraction1) T , which anticommutes
with J . Precisely,

L+ = (I + T )H+, L− = (I + T )H−. (2.5)

The operator T is called an operator of transition from the fundamental decomposition
(2.4) to the direct sum (2.2) [14].

The collection of operators of transition admits a simple “external” description.
Namely, a self-adjoint operator T in H is an operator of transition if and only if

‖Tf‖ < ‖f‖ (for all f ∈ H, f 6= 0), JT = −TJ. (2.6)

The subspaces JL± are maximal positive/negative and theirs J-orthogonal direct
sum

JD = JL+[+̇]JL− (2.7)

is called dual to (2.2). The transition operator corresponding to the dual decomposition
(2.7) coincides with −T .

Denote by PL± : D → L± the projection operators onto L± with respect to the
decomposition (2.2). The operators PL± are defined on D = L+[+̇]L− and

PL±f = PL±(fL+ + fL−) = fL± , f = fL+ + fL− ∈ D, fL± ∈ L±.

It is known [1] that

PL+ = (I − T )−1(P+ − TP−), PL− = (I − T )−1(P− − TP+), (2.8)

where P+ = 1
2 (I + J) and P− = 1

2 (I − J) are orthogonal projection operators
on H+ and H−, respectively.

2.2. DEFINITION AND GENERAL PROPERTIES OF OPERATORS C.
Let a maximal positive subspace L+ be given. Then its J-orthogonal complement
L− = L

[⊥]
+ is a maximal negative subspace and we can consider the direct sum (2.2).

The operator C associated with the direct sum (2.2) is defined as follows: according
to (2.2), any element f ∈ D admits the decomposition

f = fL+ + fL− , fL± ∈ L±. (2.9)

Then,
Cf = C(fL+ + fL−) = fL+ − fL− . (2.10)

The operator C associated with the direct sum (2.2) is J-self-adjoint and J-positive
[5, Example 3.31]. The latter means that [Cf, f ] > 0 for all nonzero f ∈ D(C) = D.

1) “Strong contraction” means that ‖Tf‖ < ‖f‖, f 6= 0.
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The set of operators C in the Krein space (H, [·, ·]) is in one-to-one correspondence
with the set of all possible J-orthogonal direct sums (2.2). If C is given, then the cor-
responding maximal positive/negative subspaces L± in (2.2) are recovered by the
formula

L± = 1
2(I ± C)H. (2.11)

In view of (2.8) and (2.10)

Cf = (PL+ − PL−)f = (I − T )−1(P+ − TP− − P− + TP+)f
= (I − T )−1(J + TJ)f = J(I + T )−1(I − T )f

(2.12)

for all f ∈ D(C).
The definition of C with the use of (2.10) is not always convenient because it

requires a description of the direct sum (2.2). An additional analysis of (2.12) allows
one to establish:
Theorem 2.1. The following statements are equivalent:
(i) an operator C is determined by the direct sum (2.2) with the use of the formula

(2.10);
(ii) an operator C has the form C = JeQ, where Q is a self-adjoint operator in (H, (·, ·))

such that JQ = −QJ ;
(iii) an operator C satisfies the relation C2f = f for all f ∈ D(C) and JC is a positive

self-adjoint operator in H.
The particular cases (the proof of equivalence of various relations between the

items (i)–(iii) of the theorem) have been considered in [1], [10], and [17].
In what follows we will use assertions (i)–(iii) of Theorem 2.1 as (equivalent)

definitions of operator C.
This means that each operator C has the form C = JeQ and, simultaneously,

the same operator C can be determined by (2.10) for a special choice of the direct
sum (2.2).

Let us find the relationship between the operator of transition T from the fun-
damental decomposition (2.4) to (2.2) and the self-adjoint operator Q. In view of
(2.12),

eQ = (I + T )−1(I − T )
or, after elementary transformations, T = (I − eQ)(I + eQ)−1. Hence,

T = −e
Q/2 − e−Q/2

2

(
eQ/2 + e−Q/2

2

)−1

= − sinh(Q/2)
cosh(Q/2) = − tanh Q2 .

Corollary 2.2. The set of all operators C is closed with respect to the calculation
of the adjoint operator. The operator C∗ is determined by the dual direct sum (2.7).
Proof. In view of statement (ii), the adjoint C∗ = [JeQ]∗ = eQJ = Je−Q belongs to
the set of operators C. The operator e−Q corresponds to the transition operator −T
from the fundamental decomposition (2.4) to (2.7). Therefore, C∗ is determined by
the dual direct sum (2.7).



70 S. Kuzhel and V. Sudilovskaya

2.3. RELATION BETWEEN OPERATORS C AND OPERATOR ANGLES.

Recall that the operator angle Θ(M,N) between subspaces M and N measured relative
to M is given by (see, e.g., [2])

Θ(M,N) = arcsin
√
IM − PMPN �M,

where IM denotes the identity operator on M, and PM and PN stand for the orthogonal
projections in H onto M and N, respectively.

By definition, the operator angle Θ(M,N) is a bounded non-negative operator
on M and

0 ≤ Θ(M,N) ≤ π

2 I.

This inequality can be specified for the cases where M = H± and N = L±.

Lemma 2.3. Let H± and L± be determined by (2.3) and (2.5), respectively. Then

Θ(H±,L±) = arcsin
√
T 2(I + T 2)−1 = arcsin |T |

√
(I + |T |2)−1,

where |T | =
√
T 2 is the modulus of T .

Proof. Let M = H+ and N = L+. Denote by P̂L+ the orthogonal projection in H
onto L+. The orthogonal projection P+ in H onto H+ has the form P+ = 1

2 (I + J).
By virtue of (2.1), H = L+ ⊕ JL−. Hence, any f+ ∈ H+ can be decomposed:

f+ = (I + T )y+ + J(I + T )z− = (I + T )y+ − (I − T )z−, y+ ∈ H+, z− ∈ H−.

Separation of the elements belonging to H±, gives the system of equations
y+ − Tz− = f+, T+y+ + z− = 0, which enables one to establish that (I + T 2)y+ = f+
and y+ = (I + T 2)−1f+. Using the decomposition of f+, we obtain

P+P̂L+f+ = P+(I + T )y+ = y+ = (I + T 2)−1f+.

Therefore,

(I − P+P̂L+)f+ = f+ − (I + T 2)−1f+ = T 2(I + T 2)−1f+

that completes the proof for Θ(H+,L+). The case Θ(H−,L−) is considered similarly.

Corollary 2.4. The operator angles Θ(H±,L±) satisfy the inequality

0 ≤ Θ(H±,L±) ≤ π

4 I. (2.13)

The operator C corresponding to the direct sum (2.2) of the subspaces L± is bounded
if and only if

‖Θ(H±,L±)‖ = max
{
λ : λ ∈ σ

(
Θ(H±,L±)

)}
<
π

4 .
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Proof. In view of Lemma 2.3, Θ(H±,L±) are the functions of a nonnegative self-adjoint
contractions |T |± = |T | �H± acting in H±. Precisely,

Θ(H±,L±) = g(|T |±), g(λ) = arcsin
(

λ√
1 + λ2

)
. (2.14)

This formula immediately leads to (2.13) since 0 ≤ g(λ) ≤ π
4 for λ ∈ [0, 1] ⊃ σ(|T |±).

The second assertion of corollary 2.4 also follows from (2.14) and the fact that
an operator C is bounded if and only if the corresponding operator of transition T is
an uniformly strong contraction (i.e., ‖T‖ < 1).

An elementary calculation shows (see, e.g., [15]) that

|T |± = tan Θ(H±,L±).

On the other hand,
|T | =

∣∣∣ tanh Q2

∣∣∣ = |T |+P+ + |T |−P−.

Therefore, the relationship between the self-adjoint operator Q in the formula C = JeQ

and the operator angles Θ(H±,L±) where L± are defined by C is:
∣∣∣ tanh Q2

∣∣∣ = tan Θ(H+,L+)P+ + tan Θ(H−,L−)P−.

2.4. BOUNDED AND UNBOUNDED OPERATORS C
There is an essential difference between the properties of bounded and unbounded
operators C. In particular, the spectrum of a bounded operator C coincides with
eigenvalues {−1, 1}, while the spectrum of unbounded C additionally has the continuous
part on C \ {−1, 1} ([1]).

If C is bounded, then: C = JeQ, where Q is a bounded self-adjoint operator in H;
the subspaces L± in (2.2) turns out to be maximal uniformly positive/negative in
the Krein space (H, [·, ·]); the direct sum (2.2) gives the decomposition of the whole
space H:

H = L+[+̇]L−; (2.15)

the given indefinite inner product [·, ·] generates infinitely many equivalent inner
products (·, ·)C in the Hilbert space (H, (·, ·)), which are determined by the choice of
bounded operators C:

(·, ·)C = [C·, ·] = (JC·, ·) = (eQ·, ·); (2.16)

the subspaces L± in (2.15) are mutually orthogonal with respect to (·, ·)C and C turns
out to be the fundamental symmetry operator in the Hilbert space (H, (·, ·)C).

If C is unbounded, then: C = JeQ, where Q is an unbounded self-adjoint operator
in H; the subspaces L± in (2.2) are maximal positive/negative in the Krein space
(H, [·, ·]); the direct sum (2.2) is a dense subset of H; the formula (2.16) determines
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infinitely many inner products (·, ·)C defined on various sets D = D(C); the linear
spaces D endowed with inner products (·, ·)C are pre-Hilbert spaces; the completion
HC of D with respect to (·, ·)C does not coincide with H; the Hilbert space (HC , (·, ·)C)
has the decomposition

HC = L̂+ ⊕C L̂−, (2.17)

where the mutually orthogonal2) subspaces L̂± are the completion of L± with respect
to (·, ·)C ; the decomposition (2.17) gives rise to the new Krein space (HC , [·, ·]′) with
the indefinite inner product

[f, g]′ = (fL̂+
, gL̂+

)C − (fL̂−
, gL̂−

)C , f = fL̂+
+ fL̂−

, g = gL̂+
+ gL̂−

,

which coincides with the original indefinite inner product [·, ·] on D.

3. J-SELF-ADJOINT OPERATORS WITH PROPERTY OF C-SYMMETRY

Definition 3.1. A densely defined operator H in H has the property of C-symmetry
if there exists an operator C with properties described in Theorem 2.1 and such that

HCf = CHf, f ∈ D(H). (3.1)

We will say that H has bounded (unbounded) C-symmetry if the corresponding
operator C is bounded (unbounded).

The commutation identity (3.1) requires an additional explanation because C may
be unbounded. Precisely, if (3.1) is satisfied, then

D(C) ⊃ D(H), C : D(H)→ D(H), H : D(H)→ D(C).

If C is a bounded operator, then the first and third relations are trivial since D(C) = H.
The existence of C-symmetry for H means that the J-orthogonal direct sum (2.2),

where L± = 1
2 (I ± C)H decomposes the operator H into the sum

H = H++̇H−, D(H) = D(H+)+̇D(H−), D(H±) ⊂ L± (3.2)

of operators H± : D(H±)→ L± acting in L±.
If H is a J-self-adjoint (J-symmetric), then its components H± in (3.2) should

be J-self-adjoint (J-symmetric) operators in L±. In this case H turns out to be
a self-adjoint (symmetric) operator with respect to the new inner product (·, ·)C.
Therefore, the description of C-symmetry for a J-self-adjoint (J-symmetric) operator
H leads to the explicit construction of the new inner product (·, ·)C which ensures the
self-adjointness (the symmetricity) of H.

Proposition 3.2. Let H be a J-self-adjoint operator with non-empty resolvent set
ρ(H) 6= ∅. Then H may only have a property of bounded C-symmetry.

2) with respect to the inner product (·, ·)C
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Proof. If H is J-self-adjoint, then H should be a closed operator in H. Let
λ ∈ ρ(H). Then the operator H − λI commutes with the same operator C and
D(C) ⊇ R(H − λ) = H. Therefore, C is a bounded operator.

Remark 3.3.
1. Proposition 3.2 may seem paradoxical only at the first glance. Indeed, if C is
unbounded, then the new inner product (·, ·)C is singular with respect to the original
inner product (·, ·). Therefore, the closedness of H with respect to (·, ·) together with
the condition ρ(H) 6= ∅ do not fit the singular inner product (·, ·)C. For this reason,
the property of unbounded C-symmetry is more natural for the case of closable (but
no closed) operators.
2. The condition ρ(H) 6= ∅ is important in Proposition 3.2. Indeed, every unbounded
operator H = C is closed (since C is J-self-adjoint), its spectrum coincides with C and,
evidently, this operator has the property of unbounded C-symmetry.

The next result is a direct consequence of Theorem 1.9 in [1] and Proposition 3.2.

Theorem 3.4. Let H be a J-self-adjoint operator. Then the following assertions are
equivalent:

(i) H has the property of C-symmetry;
(ii) H is a self-adjoint operator with respect to a new (equivalent to (·, ·)) inner

product in the Hilbert space (H, (·, ·));
(iii) H is similar3) to a self-adjoint operator in (H, (·, ·)).

The item (iii) of Theorem 3.4 allows one to characterize the (possible) existence of
C-symmetry for a J-self-adjoint operator H with the use of a well-known criterion
of similarity (see, e.g., [20]). Precisely, a J-self-adjoint operator H has the property of
C-symmetry if and only if it has a real spectrum and there exists a constant M such
that

supε>0ε

∫ ∞

−∞
‖(H − zI)−1f‖2dξ ≤M‖f‖2, f ∈ H, (3.3)

where the integral is taken along the line z = ξ + iε (ε > 0 is fixed).
However, the relation (3.3) does not answer how to construct the corresponding

operator C.
The explicit formulas for C can be derived for special classes of J-self-adjoint

operators:
I. Let us assume that a J-self-adjoint operator H is J-nonnegative, i.e., [Hf, f ] ≥ 0

for all f ∈ D(H). If the resolvent set ρ(H) is nonempty, then the spectrum of H is real
[5, Theorem 3.27]. Moreover, H has a spectral function EH(·) with properties similar
to that of a spectral function of a self-adjoint operator [19]. The main difference is the
occurrence of critical points {0,∞}. Note that ∞ is always a critical point of H, and 0
may be its critical point. Significantly different behavior of the spectral function EH(·)
occurs at singular critical points in any neighborhood of which EH(·) is unbounded.

The next statement is a direct consequence of [19, Theorem 5.7]
3) An operator H is called similar to a self-adjoint operator A if there exists a bounded and boundedly

invertible operator Z such that ZA = HZ.
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Proposition 3.5. Let H be a J -nonnegative and J -self-adjoint operator. Assume
that the resolvent set ρ(H) is non-empty, 0 and ∞ are not singular critical points and 0
is not an eigenvalue of H. Then H has a bounded C-symmetry C = EH(R+)−EH(R−),
where EH(·) is the spectral function of H.

The operator

H = (sgn x) d
2

dx2

defined on its maximal domain in L2(R) is J -nonnegative and J -self-adjoint with the
fundamental symmetry Jf = (sgn x)f in L2(R). It was showed [12] that H satisfies
all assumptions of Proposition 3.5. Hence, H has a bounded C-symmetry.

II. Let H be a J-self-adjoint operator with Riesz basis of eigenvectors {fn}
corresponding to real simple eigenvalues. Then [1, Theorem 6.3.7], H has the property
of C-symmetry, the corresponding bounded operator C is determined uniquely and

Cf =
∞∑

n=1
[f, fn]fn, f ∈ H.

(Without loss of generality, in the last formula, we assume that {fn} are normalized
with respect to the indefinite metric [·, ·], i.e., [fn, fn]2 = 1.)

4. C-SYMMETRY FOR J-SYMMETRIC OPERATORS WITH A COMPLETE SET
OF EIGENVECTORS

4.1. DESCRIPTION OF OPERATORS C ASSOCIATED WITH COMPLETE SET
OF EIGENVECTORS

Let a J-symmetric operator H have a complete set of eigenvectors {fn}∞n=1 corre-
sponding to real simple eigenvalues {λn}∞n=1. It should be noted that [fn, fn] 6= 0
for any eigenfunction fn. This fact is crucial for our investigations. Let us verify it.
Indeed, it is well known that eigenfunctions corresponding to different real eigenvalues
of a J-symmetric operator are J-orthogonal [5]. Hence, if there exists an eigenfunction
fm such that [fm, fm] = 0, then fm will be J-orthogonal to the linear span S of {fn}.
The latter means that Jfm is orthogonal to the dense set S in the Hilbert space
(H, (·, ·)). Therefore, Jfm = 0 and fm = 0 that is impossible.

Separating the sequence of eigenvectors {fn} by the signs of [fn, fn]:

fn =
{
f+
n if [fn, fn] > 0,
f−n if [fn, fn] < 0

(4.1)

we obtain two sequences of positive {f+
n } and negative {f−n } elements of the Krein

space (H, [·, ·]).
Let L0

+ and L0
− be the closure (with respect to the initial inner product (·, ·)) of

the linear spans generated by the sets {f+
n } and {f−n }, respectively. By construction,

L0
± are J-orthogonal positive/negative subspaces in (H, [·, ·]) and the direct sum

D0 = L0
+[+̇]L0

− (4.2)
is a dense set in H (since D0 contains S).
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Let C0 be an operator associated with (4.2):

C0f = fL0
+
− fL0

−
, f ∈ D(C0) = D0. (4.3)

It follows from (4.3) that the operator C0 is densely defined and C2
0f = f for

any f ∈ D(C0). However, in general case, the operator C0 cannot be considered as
an operator of C-symmetry. The matter is that the subspaces L0

± in (4.2) may be
proper subspaces of a maximal definite subspaces L±.

If at least one of subspaces L0
± loses the property of being maximal in the classes

of definite subspaces (positive or negative), then the sum (4.2) cannot be domain of
definition of an operator of C-symmetry with properties described in Theorem 2.1. In
other words, the operator C0 cannot be presented as JeQ, where eQ is a self-adjoint
operator. Of course, this phenomenon is possible only in the case of unbounded
operators C.

In order to construct a proper operator C associated with (4.2) we have to extend
(4.2) to a J-orthogonal direct sum L+[+̇]L−, where L± ⊃ L0

± are maximal definite
subspaces (positive and negative). Obviously, the operator C determined by the direct
sum L+[+̇]L− will be an extension of C0.

In general, the mentioned extension

L0
+[+̇]L0

− → L+[+̇]L− (4.4)

is not determined uniquely4). This leads to the nonuniqueness of unbounded operators
of C-symmetry C ⊃ C0 associated with L0

+[+̇]L0
−. Therefore, the complete set of

eigenvectors {fn} does not always determine a unique operator C.
In order to describe all possible extensions (4.4) we introduce the operatorG0 = JC0,

where C0 is defined by (4.3).

Lemma 4.1. The operator G0 is a closed positive symmetric operator in (H, (·, ·))
and

JG0JG0f = f, f ∈ D0 = D(G0) = D(C0). (4.5)

Proof. Repeating the proof of Lemma 6.2.3 in [1] we decide that C0 is a closed operator
in H. Therefore, the operator G0 = JC0 is closed too. The positivity of G0 follows
from the fact that

(G0f, f) = [C0f, f ] = [fL0
+
, fL0

+
]− [fL0

−
, fL0

−
] > 0

for all nonzero f ∈ D0. The “boundary condition” (4.5) is the direct consequence of
the relation C2

0 = I on D(C0).

The next result reduces the description of all possible operators C associated with
the initial direct sum (4.2) to the description of a special class of positive self-adjoint
extensions G of G0.

4) This phenomenon was discovered by Langer [18].
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Proposition 4.2. The set of all positive self-adjoint extensions G of G0 satisfying
the condition

JGJGf = f, f ∈ D(G) (4.6)

is in one-to-one correspondence with the set of all possible extensions (4.4), where L±
are J-orthogonal maximal positive/negative subspaces in the Krein space (H, [·, ·]).
Proof. Let G be a positive self-adjoint extension of G0 such that (4.6) holds. Then
C = JG satisfies assertion (iii) in Theorem 2.1. Therefore, the operator C determines
the J-orthogonal maximal positive/negative subspaces L± by the formula (2.11). These
subspaces are extensions of L0

± since C is an extension of C0.
Conversely, each extension (4.4) defines an operator C by formula (2.10). This

operator is an extension of C0 and, hence the positive self-adjoint operator G = JC is
an extension of G0 = JC0.

4.2. THE CASE OF FRIEDRICHS EXTENSION

Let D[G0] ⊂ H be the closure of D(G0) with respect to the norm

‖f‖2
0 = ‖f‖2 + (G0f, f), f ∈ D(G0). (4.7)

The operator GF defined as follows:

GF f = G∗0f, f ∈ D(GF ) = D[G0] ∩D(G∗0)

is called the Friedrichs extension of G0.
The Friedrichs extension GF preserves the lower bound of G0:

inf
f∈D(G0)\{0}

(G0f, f)
(f, f) = inf

f∈D(GF )\{0}
(GF f, f)

(f, f) .

and it is a unique positive self-adjoint extension having the domain in D0[G0] [3, 16].

Theorem 4.3. The Friedrichs extension GF satisfies the relation

JGFJGF f = f, f ∈ D(GF )

if and only if GF is the unique positive self-adjoint extension of G0.

Proof. The operator G0 has the inverse G−1
0 which is defined on the dense set JD(G0)

in H and the condition (4.5) can be rewritten as

JG0f = G−1
0 Jf, f ∈ D(G0). (4.8)

By virtue of (4.8) the operator J isometrically maps the Hilbert space (D[G0], ‖·‖0)
onto the Hilbert space (D[G−1

0 ], ‖ · ‖1), where D[G−1
0 ] is the completion of the domain

of definition D(G−1
0 ) = JD(G0) with respect to the norm (cf (4.7))

‖g‖2
1 = ‖g‖2 + (G−1

0 g, g), g∈JD(G0).
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The calculation of adjoint operators in (4.8) gives G∗0J = J(G−1
0 )∗ or JG∗0 =

(G−1
0 )∗J . Therefore, for any f ∈ D(GF ) = D[G0] ∩D(G∗0),

JG∗0f = JGF f = (G−1
0 )∗Jf = (G−1

0 )FJf,

where Jf ∈ D[G−1
0 ] ∩ D((G−1

0 )∗) and (G−1
0 )F is the Friedrichs extension of the

positive symmetric operator G−1
0 . Using the well-known relation (G−1

0 )F = (GK)−1

(see, e.g. [3]), where GK is the Krein-von Neumann extension of G0, we conclude that

JGF f = (GK)−1Jf, f ∈ D(GF ).

Therefore, the required condition JGFJGF = I holds if and only if the Friedrichs
extension GF of G0 coincides with the Krein-von Neumann extension GK . This is
possible if and only if G0 has a unique positive self-adjoint extension [16].

Corollary 4.4. The operator C = JGF is the operator of C-symmetry associated with
(4.2) if and only if

inf
f∈D(G0)\{0}

(G0f, f)
|(f, g)|2 = 0 (4.9)

for all nonzero vectors g ∈ ker(I +G∗0).

Proof. It follows from Proposition 4.2 and Theorem 4.3 that the operator C = JGF
determines a J-orthogonal sum of maximal definite subspaces L± which is the extension
of (4.2) if and only if GF is the unique positive self-adjoint extension of G0. The latter
is equivalent to the condition (4.9) [16, Theorem 9].

Let C be an operator of C-symmetry associated with (4.2) and let HC be the
corresponding Hilbert space obtained by the completion of L+[+̇]L− with respect to
the inner product (·, ·)C (see (2.17)).

By construction, the original direct sum L0
+[+̇]L0

− determined by the eigenfunctions
{fn} is a linear manifold in the new Hilbert space (HC , (·, ·)C). However, in the general
case, we cannot state that this linear manifold is a dense set in HC .

Theorem 4.5. If the operator C is determined by the Friedrichs extension GF (i.e.,
if the condition (4.9) holds), then the linear span of eigenvectors {fn} is a dense set
in HC

Proof. The Friedrichs extension GF is an example of extremal extension of G0 [4].
By definition, a nonnegative self-adjoint extension G of G0 belongs to the class E(G0)
of extremal extensions if

inf
f∈D(G0)

(G(φ− f), (φ− f)) = 0 for all φ ∈ D(G). (4.10)

Since ‖φ − f‖2
C = [C(φ − f), φ − f ] = (G(φ − f), (φ − f)), the condition (4.10)

means that each element φ ∈ D(C) = D(G) can be approximated by elements
f ∈ D(G0) = L0

+[+̇]L0
− in HC . Now, in order to complete the proof, it suffices to verify

that the span of {fn} is a dense subset of D(G0) with respect to (·, ·)C .
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The inner product (·, ·)C considered on L0
± coincides with ±[·, ·] and satisfies the

evaluation

(fL0
±
, fL0

±
)C = |(PfL0

±
, fL0

±
)| ≤ ‖PfL0

±
‖‖fL0

±
‖ = ‖fL0

±
‖2 = (fL0

±
, fL0

±
)

for any fL0
±
∈ L0

±. Therefore, each element fL0
±
∈ L0

± can be approximated by
span{f±n } with respect to (·, ·)C since L0

± are closure of span{f±n } with respect to
(·, ·). This means that span{fn} = span{f+

n } ∪ span{f−n } is a dense set in D(G0) with
respect to (·, ·)C .

Corollary 4.6. If the operator C is determined by the Friedrichs extension GF , then
the normalized eigenvectors5) {fn} forms an orthonormal basis of the Hilbert space
(HC , (·, ·)C).

Proof. By virtue of (2.16) and (4.3), the normalized eigenvectors {fn} are an orthonor-
mal system in the Hilbert space (HC , (·, ·)C). Due to Threorem 4.5, the linear span of
{fn} is a dense set in HC . Therefore, {fn} turns out to be an orthonormal basis of this
Hilbert space.

Up to now we do not specify the domain of definition of the J-symmetric operatorH.
Let the domain D(H) coincide with the linear span of {fn}. Then relation (3.1) holds
for any operator C associated with (4.2). If the Friedrichs extension GF determines an
operator of C-symmetry (i.e., if condition (4.9) holds), then the operator H turns out
to be essentially self-adjoint in the Hilbert space (HCF

, (·, ·)CF
) where CF = JGF and

σ(H) coincides with the closure of {λn}.

Example 4.7. Schauder basis of eigenvectors.
Let normalized eigenvectors {fn}∞n=1 of a J-symmetric operator H with real simple

eigenvalues form a Schauder basis. We recall that a sequence {fn} is called a Schauder
basis of a Hilbert space H if, for each f ∈ H, there exist uniquely determined scalar
coefficients {cn} such that

f =
∞∑

n=1
cnfn.

The coefficients {cn} can easy be specified with the use of a biorthogonal sequence6)

{gn}, namely: cn = (f, gn). Since the eigenvectors {fn} are mutually J-orthogonal and
normalized, the sequence {gn} has the form gn = [fn, fn]Jfn. Therefore, taking into
account the separation (4.1) of eigenvectors {fn} by the signs of [fn, fn], we obtain

f =
∞∑

n=1
[fn, fn][f, fn]fn =

∞∑

n=1
[f, f+

n ]f+
n −

∞∑

n=1
[f, f−n ]f−n , f ∈ H.

5) That is, {fn} are normalized with respect to the indefinite metric [·, ·]: [fn, fn]2 = 1.
6) Biorthonormality of seguences {fn} and {gn} means that (fn, gm) = δnm.
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If {fn} is a Schauder basis, then the subspaces L0
± defined as the closure of the linear

spans of {f±n }, respectively are maximal positive/negative in the Krein space (H, [·, ·]) [5,
Statement 10.12 in Chapter 1]. Therefore, the formula (4.3) determines an unbounded
operator C = C0 with the domain of definition (4.2). For each f ∈ D(C) = D0,

Cf = fL0
+
− fL0

−
=
∞∑

n=1
[fL0

+
, f+
n ]f+

n +
∞∑

n=1
[fL0

−
, f−n ]f−n =

∞∑

n=1
[f, fn]fn.

The operator G0 = JC is a positive self-adjoint operator. Therefore, its Friedrichs
extension coincides with G0.

If the domain D(H) coincides with the linear span of {fn}, then H has the
property of C-symmetry with the operator C determined above. The operator H will
be essentially self-adjoint in the new Hilbert space (HC , (·, ·)C).
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[3] Yu. Arlinskǐi, E. Tsekanovskǐi, M. Krein’s research on semi-bounded operators, its con-
temporary developments, and applications, Operator Theory: Advances and Applications
190 (2009), 65–112.
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