Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of this paper is to assess the microbiological quality of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) from aquaculture farms located within the "Dolina Słupi" (Slupia Valley) Landscape Park, with a focus on regional sustainability practices. The research aims to evaluate water hygiene, the microbiological quality of feed, the prevalence of antibiotic-resistant bacteria, and their impact on the final quality of the farmed trout. This study seeks to contribute to the broader discourse on sustainable aquaculture by highlighting the importance of quality and risk management practices in maintaining food safety and environmental stewardship. Design/methodology/approach: The research employed a comprehensive microbiological analysis of samples collected from trout farms, including external and internal parts of trout, viscera, water, and feed. The study focused on identifying the presence of specific pathogens, such as Staphylococcus aureus, Escherichia coli, Salmonella spp., methicillin-resistant S. aureus, and vancomycin-resistant Enterococcus spp. The approach combined field sampling with laboratory testing to assess the hygienic conditions of the aquaculture environment and the quality of the final fish products. The research focuses on evaluating the microbiological quality of trout from aquaculture farms, with particular attention to local practices and their alignment with sustainability goals. Findings: The study revealed that the trout from the examined farms generally met good microbiological quality standards. Specifically, no methicillin-resistant S. aureus or vancomycin-resistant E. faecium and E. faecalis were detected, indicating effective risk management. However, Salmonella spp. were present in 30.5% of water samples, yet their presence did not significantly affect the contamination levels in fish samples. The highest S. aureus count was found on the skin of rainbow trout (1.5±101 cfu/g), while E. coli was detected on brook trout skin and viscera (11%). Enterococcus spp. were found in 17% of feed samples, but at low concentrations (<10 cfu/g). These results suggest that while overall microbiological quality is satisfactory, ongoing monitoring and adherence to good management practices are crucial for maintaining safety and quality in aquaculture. Research limitations/implications: One limitation of the research is the geographical focus on aquaculture farms within the "Dolina Słupi" Landscape Park, which may limit the generalizability of the findings to other regions or types of aquaculture systems. Future research could expand the scope to include a broader range of aquaculture environments and examine the long-term impact of sustainability practices on fish quality. Practical implications: The research underscores the critical role of continuous monitoring and rigorous quality management practices in aquaculture. The findings indicate that by implementing effective hygiene protocols and risk management strategies, aquaculture farms can achieve high safety standards for their fish products. These practices not only ensure product quality and consumer safety but also support the sustainability and economic viability of the aquaculture industry. Social implications: The study demonstrates that sustainable aquaculture enhances food security and environmental conservation. By promoting effective practices, it builds public trust in farmed fish, potentially influencing consumer behavior and supporting more sustainable industry practices. Originality/value: This paper contributes to the existing body of knowledge on sustainable aquaculture by providing empirical evidence on the microbiological quality of trout from farms in a specific regional context. It offers practical insights for industry professionals and consumers on optimizing quality and risk management to ensure safe and sustainable fish production.
Rocznik
Tom
Strony
241--252
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Gdynia Maritime University
autor
- Gdynia Maritime University
autor
- Gdynia Maritime University
Bibliografia
- 1. Araújo, A.J.G.D., Grassotti, T.T., Frazzon, A.P.G. (2020). Characterization of Enterococcus spp. isolated from a fish farming environment in southern Brazil. Brazilian Journal of Biology, 81, 954-961. doi:10.1590/1519-6984.232503
- 2. Ayenadis, T., Aweke, E. (2019). Isolation, Identifi cation and antimicrobial susceptibility profi le of E. coli (O157:H7) from fish in Lake Hawassa, Southern Ethiopia. International Journal of Veterinary Science & Technology, 3(1), 13-19. doi:10.7537/marslsj170220.10
- 3. Biegała, Z. (2014). Zrównoważony rozwój akwakultury przyszłością sektora przetwórstwa rybnego. Rocznik Samorządowy, 3, 12-25.
- 4. Brancaccio, M., Mennitti, C., Cesaro, A., Fimiani, F., Vano, M., Gargiulo, B., Caiazza, M., Amodio, F., Coto, I., D'Alicandro et al. (2022). The biological role of vitamins in athletes' muscle, heart and microbiota. International Journal of Environmental Research and Public Health, 19(3), 1249. doi:10.3390/ijerph19031249
- 5. Elhadi, N. (2014). Prevalence and antimicrobial resistance of Salmonella spp. in raw retail frozen imported freshwater fish to Eastern Province of Saudi Arabia. Asian Pacific Journal of Tropical Biomedicine, 4, 234-238. doi:10.1016/S2221-1691(14)60237-9
- 6. Fernandes, D.V.G.S., Castro, V.S., Cunha Neto, A.D., Figueiredo, E.E.D.S. (2018). Salmonella spp. in the fish production chain: a review. Ciência Rural, 48, 8, e20180141. doi:10.1590/0103-8478cr20180141
- 7. Firlej, K., Sikorska, D., Wielewska, I., Jeleń, B. (2005). Rola i miejsce zrównoważonego rozwoju w działalności polskich przedsiębiorstw. Integracja problemów środowiskowych i teorii zrównoważonego rozwoju w systemie zarządzania przedsiębiorstwem. Białystok: Politechnika Białostocka, Centrum Zrównoważonego Rozwoju i Zarządzania Środowiskiem, 263-269.
- 8. Forleo, M.B., Palmieri, N. (2023). Environmental Attributes of wild versus farmed tuna: beliefs, knowledge and purchasing choices of Italian consumers of canned tuna. Sustainability,15(9), 7149. doi:10.3390/su15097149
- 9. HLPE, Sustainable fisheries and aquaculture for food security and nutrition (2014). A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Rome.
- 10. Joseph, G., Kharnaior, E., Remyakumari, K. (2017). Physicochemical and microbiological quality of aquaculture farms of Chellanam Panchayath, Ernakulam. International Journal of Fisheries and Aquatic Studies, 5(5), 428-437.
- 11. Kowalska, J. (2022). Spożycie ryb na świecie - jak wypada spożycie ryb w Polsce na tle świata? https://wiadomoscispozywcze.pl/artykuly/11328/spozycie-ryb-na-swiecie-jak-wypada-spozycie-ryb-w-polsce-na-tle-swiata/, 9.08.2023.
- 12. Kukułowicz, A., Steinka, I., Siwek, A. (2021). Aquatic products of different processing levels as a source of methicillin-resistant Staphylococcus aureus. Żywność Nauka Technologia Jakość, 28, 3(128), 55-62. doi:10.15193/zntj/2021/128/388
- 13. Külahci, M.B., Gündoğan, N. (2021). Occurrence and characteristics of staphylococci and enterococci in retail fish used for human consumption in Turkey. Avrupa Bilim ve Teknoloji Dergisi, 28, 911-916.
- 14. López-Mas, L., Claret, A., Arvisenet, G., del Castillo, R.R., Kallas, Z., Zuccaro, M., Guerrero, L. (2023). European consumers' beliefs about the main pillars of the sustainability: a comparison between wild and farmed Fish. Aquaculture International, 1-21. doi:10.1007/s10499-023-01070-2
- 15. Maik, R. (2017). Jakość produktów w świetle idei zrównoważonego rozwoju. Marketing i Zarządzanie, 2(48), 373-385. doi:10.18276/miz.2017.48-34
- 16. Mishra, S.P., Pradesh, U. (2020). Significance of fish nutrients for human health. International Journal of Fisheries and Aquatic Research, 5(3), 47-49.
- 17. Mitiku, B.A., Mitiku, M.A., Ayalew, G.G., Alemu, H.Y., Geremew, U.M., Wubayehu, M. T. (2023). Microbiological quality assessment of fish origin food along the production chain in upper Blue Nile watershed, Ethiopia. Food Science & Nutrition, 11(2), 1096-1103. doi:10.1002/fsn3.3147
- 18. Murugadas, V., Toms, C., Joseph, K., Reshmi, K., Lalitha, K.V. (2016). Prevalence of methicillin resistant Staphylococcus aureus in selected seafood markets and aquaculture farms in Kerala, south-west coast of India. Indian Journal of Fisheries, 63(4), 150-153. doi:10.21077/ijf.2016.63.4.59010-25
- 19. OECD, F.A.O. (2022). OECD-FAO agricultural outlook 2022-2031. https://www.agri-outlook.org/commodities/oecd-fao-agricultural-outlook-fish.pdf, 9.08.2023.
- 20. Oniyide, T.J, Ogidi, C.O., Akinyele, B.J. (2022). Microbiological quality and organoleptic property of meat and fish preserved with oil from dacryodes edulis seed. Acta Universitatis Cibiniensis Series E: Food Technology, XXVI(1), 55-68. doi:10.2478/aucft-2022-0005
- 21. Pandey, S., Upadhyay, R.K. (2022). Dietary and nutritional value of fish oil, and fermented products. Journal of Fisheries Science, 4(1), 26-45. doi:10.30564/jfs.v4i1.4311
- 22. Pepi, M., Focardi, S. (2021). Antibiotic-resistant bacteria in aquaculture and climate change: a challenge for health in the Mediterranean area. International Journal of Environmental Research and Public Health, 18(11), 5723. doi:10.3390/ijerph18115723
- 23. Polska na świecie i w UE. https://www.eumofa.eu/documents/20178/61322/Poland_pl.pdf, 10.08.2023.
- 24. Rey, S., Little, D.C., Ellis, M.A. (2019). Farmed fish welfare practices: salmon farming as a case study. GAA publications.
- 25. Rondón-Espinoza, J., Gavidia, C.M., González, R., Ramos, D. (2022). Water quality and microbiological contamination across the fish marketing chain: a case study in the Peruvian Amazon (Lagoon Yarinacocha). Water, 14(9), 1465. doi:10.3390/w14091465
- 26. Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli (Dz.U. z 2019 r., poz. 255). https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id= WDU20190000255
- 27. Sarker, P.K. (2023). Microorganisms in Fish Feeds, Technological innovations, and key strategies for sustainable aquaculture. Microorganisms, 11(2), 439. doi:10.3390/microorganisms11020439
- 28. Sheng, L., Wang, L. (2021). The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety, 20, 738-786. doi:10.1111/1541-4337.12671
- 29. Sustainable seafood: discover the eco-friendly benefits of fish farming (2023), https://www.kohinoorrope.com/sustainable-seafood-discover-the-eco-friendly-benefits-of-fish-farming/, 21.08.2023.
- 30. The State of World Fisheries and Aquaculture (2022). https://reliefweb.int/report/ world/state-world-fisheries-and-aquaculture-2022-enarruzh, 9.08.2023.
- 31. Tilahun, A., Engdawork, A. (2020). Isolation, identification and antimicrobial susceptibility profile of E. coli (O157: H7) from fish in lake Hawassa, southern Ethiopia. Life Science Journal, 17, 64-72. doi:10.7537/marslsj170220.10
- 32. Vasemägi, A., Visse, M., Kisand, V. (2017). Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. MSphere, 2(6), e00418-17. doi:10.1128/msphere.00418-17
- 33. Vázquez-Sánchez, D., López-Cabo, M., Saá-Ibusquiza, P., Rodríguez-Herrera, J.J. (2012). Incidence and characterization of Staphylococcus aureus in fishery products marketed in Galicia (Northwest Spain). International Journal of Food Microbiology, 157(2), 286-296.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb7b8cd8-0ad3-44a4-a65a-af0c054e40e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.