Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
High security solutions are highly important in wireless medical environments, since patient data is confidential, sensitive and must be transmitted over a secure connection. Accordingly, a hybrid encryption method is proposed to ensure data confidentiality (RSA-2048 for key exchange using ACL in SDN with the addition of AES-256-CTR and a hashed secret key for data encryption), and the encrypted data is stored in a private blockchain with the DBFT consensus algorithm to ensure the integrity of data before it being accessed by a doctor's application which decrypts and displays the relevant information. The system was programmed using Python, in an NS3.37 simulator installed on Ubuntu with a MySQL database created using the Apache XAMPP. The product turned out to be a highly secure system for transmitting data from a medical sensor to the doctor's application, offering a throughput of approximately 9 Gbps for both encryption and decryption tasks, while the processing time equaled 0.014 µs per a 128-bit block size for both encryption and decryption, with latency amounting to 0.14 s per 1 KB of data, and the blockchain agreement time equaling 4 ms per 1 KB.
Słowa kluczowe
Rocznik
Tom
Strony
41--47
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- College of Information Engineering Al-Nahrain University, Baghdad, Iraq
autor
- College of Information Engineering Al-Nahrain University, Baghdad, Iraq
Bibliografia
- [1] B. Abidi, A. Jilbab, and E.H. Mohamed, “Wireless Body Area Networks: A Comprehensive Survey”, Journal of Medical Engineering & Technology, vol. 44, no. 3 , pp. 97– 107, 2020 (https: //doi.org/10.1080/03091902.2020.1729882).
- [2] T. Benmansour, T. Ahmad, S. Moussaoui, and Z. Doukha, “Performance Analyses of the IEEE 802.15. 6 Wireless Body Area Network with Heterogeneous Traffic”, Journal of Network and Computer Applications, vol. 163, 2020 (https://doi.org/ 10.1016/j.jnca.2020.102651).
- [3] K. Hasan, et al., “A Blockchain-based Secure Data-sharing Framework for Software Defined Wireless Body Area Networks”, Computer Secure Data Delivery in a Software-Defined Wireless Body Area Network Networks, vol. 211, art. no. 109004, 2022 (https://doi.org/ 10 .1016/j.comnet.2022.109004).
- [4] T. Jabeen, H. Ashraf, and A. Ullah, “A Survey on Healthcare Data Security in Wireless Body Area Networks”, Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 9841– 9854, 2021 (https://doi.org/10.1007/s12652-020-02728-y).
- [5] M.S. Hajar, M.O. Al-Kadri, and H.K. Kalutarage, “A Survey on Wireless Body Area Networks: Architecture, Security Challenges and Research Opportunities”, Computers & Security, vol. 104, art. no. 102211 , 2021 (https://doi.org/ 10.1016/j.cose.2021.102211).
- [6] J.C.C. Chica., J.C. Imbachi, and J.F.B. Vega, “Security in SDN: A Comprehensive Survey”, Journal of Network and Computer Applications, vol. 159, art. no. 102595, 2020 (https://doi.org/ 10.1016/j.jnca.2020.102595).
- [7] D. Kreutz et al., “Software-defined Networking: A Comprehensive Survey”, Proceedings of the IEEE, vol. 103, pp. 14–76, 2015 (https: //doi.org/10.1109/JPROC.2014.2371999).
- [8] Y. Meng et al., “SDN-based Security Enforcement Framework for Data Sharing Systems of Smart Healthcare”, IEEE Transactions on Network and Service Management, vol. 17 , no. 1, pp. 308–318, 2019 (https://doi.org/10.1109/TNSM.2019.2941214).
- [9] K. Hasan et al., “A Novel Framework for Software Defined Wireless Body Area Network”, 2018 8th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Kuala Lumpur, Malaysia, 2018 (https://doi.org/10.1109/ISMS.2018.00031).
- [10] B. Narwal and A.K. Mohapatra, “A Survey on Security and Authentication in Wireless Body Area Networks”, Journal of Systems Architecture, vol. 113, art. no. 101883 , 2021 (https://doi.org/10.1016/j.sysarc.2020.101883).
- [11] S. Das and S. Namasudra, “A Novel Hybrid Encryption Method to Secure Healthcare Data in IoT-enabled Healthcare Infrastructure”, Computers and Electrical Engineering, vol. 101 , art. no. 107991, 2022 (https://doi.org/10.1016/j.compeleceng.2022.10799).
- [12] K. Sowjanya and M. Dasgupta, “A Ciphertext-policy Attribute Based Encryption Scheme for Wireless Body Area Networks Based on ECC”, Journal of Information Security and Applications, vol. 54, art. no. 102559, 2020 (https://doi.org/ 10. 1016/j.jisa.2020.102559).
- [13] S. Singh et al., “A GA-based Sustainable and Secure Green Data Communication Method Using IoT-enabled WSN in Healthcare”, IEEE Internet of Things Journal, vol. 9, no. 10, pp. 7481–7490 , 2022 (https://doi.org/10.1109/JIOT.2021.3108875).
- [14] A.E. Guerrero-Sanchez et al., ”Blockchain Mechanism and Symmetric Encryption in a Wireless Sensor Network”, Sensors, vol. 20, no. 10 , art. no. 2798, 2020 (https://doi.org/10.3390/s20102798).
- [15] H. Benaddi et al., “A Framework to Secure Cluster-header Decision in Wireless Sensor Network Using Blockchain”, Second International Conference, ACOSIS 2019, Marrakesh, Morocco, 2020 (https: //doi.org/10.1007/978-3-030-61143-9_17).
- [16] T. Manjunath and A.S. Shobha, “Design & Development of Transmitted & Encrypted Datas Using SDN and Energy Self-healing Concepts Used in RF Energy Harvesting Wireless Sensor Nets”, 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 2022 (https://doi.org/10.1109/ICICICT54557.2022.9917923).
- [17] W. Stallings, Cryptography and Network Security: Principles and Practice, Pearson, 7th ed., 768 p., 2016 (ISBN: 9780134444284).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb7ac21d-4de7-4a02-bc9c-3dd0f093691c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.