PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy logic in decision support system as a simple Human/Internet of Things interface for shunt active power filter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces a fuzzy logic (FL) based decision support system (DSS) for a three-phase bidirectional AC-DC grid converter, working in a modern grid-like smart grid or smart industry. It is assumed that the appliances connected to that grid interact as in the Internet of Things (IoT) or like in the Internet of Everything (IoE) i.e. with a human being located in the chain of data flow. A power electronics AC-DC converter, operating as a shunt active power filter (SAPF) is selected for the case study. A harmonics reduction algorithm is presented as an implementation sample of the DSS. The operation of the SAPF is described and analysed. Experimental results showing the tuning process and operation of the laboratory model are also presented and discussed. Finally, it is shown that the DSS is an elegant and intuitive interface, which can simplify a human’s or machine’s decision-making process. Thanks to the DSS, the meaning of transferred data is translated into linguistic variables that can be understood by non-experts. Hence, it is expected that the amount of transferred data in the smart grid and in the IoE would be reduced. But in the same time, the high quality of the controlled process is retained, as shown by the example of a conventional SAPF.
Rocznik
Strony
877--886
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
  • Electrical and Computer Engineering Department, Bradley University, Peoria, IL 61625, United States of America
Bibliografia
  • [1] M. Cichowlas, PWM Rectifier with Active Filtering, PhD Thesis, WUT, 2004.
  • [2] M. Jasinski, G. Wrona, and S. Piasecki, “Chapter 3: Control of grid connected converter (GC) under grid voltage disturbances” in Advanced and Intelligent Control in Power Electronics and Drives, eds. T. Orłowska-Kowalska, F. Blaabjerg and J. Rodríguez, 91‒142, Springer, 2014.
  • [3] T. Płatek and T. Osypiński, “Current control with asymmetrical regular sampled pulse width modulator applied in parallel active filter”, Bull. Pol. Ac.: Tech. 64 (2), 287‒300 (2016).
  • [4] R. Teodorescu, M. Liserre and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems, Wiley, 2011.
  • [5] A. Keane, L. Ochoa, C. Borges, G. Ault, A. Alarcon-Rodriguez, R. Currie, F. Pilo, C. Dent and G. Harrison, “State-of-the-art techniques and challenges ahead for distributed generation planning and optimization”, IEEE Trans. Power Systems 28 (2), 1493‒1502 (2012).
  • [6] D. Das, “A fuzzy multiobjective approach for network reconfiguration of distribution systems”, IEEE Trans. Power Delivery 21 (1), 202‒209 (2006).
  • [7] R. Strzelecki and G. Benysek, Power Electronics in Smart Electrical Energy Networks, Springer, 2008.
  • [8] T. Kaczorek, “Positive time-varying continuous-time linear systems and electrical circuits”, Bull. Pol. Ac:. Tech. 63 (4), 837‒842 (2015).
  • [9] B. Ufnalski, L. M. Grzesiak, “Plug-in direct particle swarm repetitive controller with a reduced dimensionality of a fitness landscape – a multi-swarm approach”, Bull. Pol. Ac:. Tech. 63 (4), 857‒866 (2015).
  • [10] P. Pruski, S. Paszek, “Assessment of Polish Power System angular stability based on analysis of different disturbance waveforms”, Bull. Pol. Ac:. Tech. 63 (2), 435‒441 (2015).
  • [11] M. Magiera, “A multi-level method of support for management of product flow through supply chains”, Bull. Pol. Ac:. Tech. 63 (4), 933‒946 (2015).
  • [12] M. Jasinski, M. Liserre, F. Blaabjerg and M. Cichowlas, “Fuzzy logic current controller for PWM rectifiers”, IEEE Industrial Electronics, IECON 02 – 28th Annual Conf., 1300‒1305 (2002).
  • [13] G. Tsengenes and G. Adamidis, “Shunt active power filter control using fuzzy logic controllers”, IEEE International Symposium on Industrial Electronics (ISIE), 365‒371 (2011).
  • [14] D. Qian, S. Tong, B. Yang, and S. Lee, “Design of simultaneous input-shaping-based SIRMs fuzzy control for double-pendulum-type overhead cranes”, Bull. Pol. Ac:. Tech. 63 (4), 887‒896 (2015).
  • [15] P. Witczak, M. Witczak, J. Korbicz, and Ch. Aubrun, “A robust predictive actuator fault-tolerant control scheme for Takagi-Sugeno fuzzy systems”, Bull. Pol. Ac:. Tech. 63 (4), 977‒987 (2015).
  • [16] P. Majtczak and S. Piasecki, “Shunt active power filter with fuzzy logic interface for harmonic reduction”, Conf. Doctoral School of Energy and Geotechnology II, 134‒140 (2015).
  • [17] S. Piasecki, R. Szmurło, and M. Jasinski, “Design of AC-DC grid connected converter using multi-objective optimization”, Electrical, Control and Communication Engineering 5 (1), 11‒19 (2014).
  • [18] M.B. Gorzałczany and F. Rudziński, “Handling fuzzy systems’ accuracy-interpretability trade-off by means of multi-objective evolutionary optimization methods – selected problems”, Bull. Pol. Ac:. Tech. 63 (3), 791‒798 (2015).
  • [19] S. Mitchell, N. Villa, M. Stewart-Weeks, and A. Lange, “The Internet of Everything for Cities”, http://ioeassess-ment.cisco.com/.
  • [20] PGE Dystrybucja S.A., Instrukcja Ruchu i Eksploatacji Sieci Dystrybucyjnej, 2013.
  • [21] P. Ferracci, “Power quality”, Schneider Electric Cahier Tech. 199, 1‒32 (2000).
  • [22] L. A. Zadeh, “Fuzzy sets”, Information and Control 8 (3), 338–353 (1965).
  • [23] E. P. Dadios, Fuzzy Logic – Algorithms, Techniques and Implementation, InTech, 2012.
  • [24] M. J. Patyra, D. M. Mlynek, Fuzzy Logic: Implementation and Applications, Wiley – Teubner, 1996.
  • [25] G. Viot, “Fuzzy logic in C”, http://www.drdobbs.com/cpp/fuzzy-logic-in-c/184408940, (1993).
  • [26] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, part II”, IEEE Trans. Systems, Man and Cybernetics 20 (2), 419‒435 (1990).
  • [27] T. Skulavik, M. Kopcek, P. Mydlo and P. Schreiber, “The defuzzification methods influence on fuzzy control of nuclear reactor”, Int. Symposium Computational and Business Intelligence, 119‒122 (2013).
  • [28] M. Jasiński, Direct Power and Torque Control of AC/DC/AC Converter-Fed Induction Motor Drives, PhD Thesis, WUT, 2005.
  • [29] M. P. Kazmierkowski, M. Jasinski, and G. Wrona, “DSP-based control of grid-connected power converters operating under grid distortions”, IEEE Trans. Ind. Informatics 7 (2), 204‒211 (2011).
  • [30] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez and F. Blaabjerg, “Evaluation of current controllers for distributed power generation systems”, IEEE Trans. Power Electronic 24 (3), 654‒664 (2009).
  • [31] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley, 2007.
  • [32] S. Piasecki, M. Jasinski, K. Rafał, A. Sikorski and A. Milicua, “Higher harmonics compensation in grid-connected PWM converters for renewable energy interface and active filtering”, Przegląd Elektrotechniczny 87 (6), 85‒90 (2011).
  • [33] S. Piasecki, M. Jasinski and A. Milicua, “Brief view on control of grid-interfacing AC-DC-AC converter and active filter under unbalanced and distorted voltage conditions”, International Journal for Computation and Mathematics in Electrical and Electronic Engineering 30 (1), 351‒373 (2011).
  • [34] S. Piasecki, M. Jasinski, G. Wrona and W. Chmielak, “Robust control of grid connected AC-DC converter for disturbed generation”, IEEE Industrial Electronics IECON – 38th Annual Conf. 5840‒5845 (2012).
  • [35] M. Jasinski, M. Cichowlas and M. P. Kazmierkowski, “Direct control for AC/DC/AC converter-fed induction motor with active filtering function”, COMPEL 25 (1), 235‒243 (2006).
  • [36] S. Bhattacharya and D. Divan, “Synchronous frame based controller implementation for a hybrid series active filter system”, IEEE Industry Applications Conf. IAS 3, 2531‒2540 (1995).
  • [37] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, 1999.
  • [38] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing Second Edition, Cambridge University Press, 1992.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb791290-6029-447c-b13f-3dc79b797a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.