PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal sliding control of mobile manipulators

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper adresses optimal control problem of mobile manipulators. Dynamic equations of those mechanisms are assuemd herein to be uncertain. Moreover, unbounded disturbances act on the mobile manipulator whose end-effector tracks a desired (reference) trajectory given in a task (Certesian) space. A compytionally efficient class of two-stage cascaded (hierarchchical) control algotithms based on both the transpose Jacobian matrix and transpose actuation matrix, has been proposed. The offered control laws involve to kinds of non-singular terminal sliding mode (TSM) manifolds, which were also introduced in the paper. The proposed class of cooperating sub-controllers is shown to be finite time stable be fulfilment of practically reasonable assumptions. The performance of the proposed control strategies is illustated on an exemplary mobile manipulator whose end-effector tracks desired trajectory.
Rocznik
Strony
777--788
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Centrum Badan Kosmicznych Polskiej Akademii Nauk
Bibliografia
  • [1] M. Przybyla, M. Kordasz, R. Madonski, P. Herman, and P. Sauer, “Active disturbance rejection control of a 2DOF manipulator with significant modeling uncertainty”, Bull. Pol. Ac.: Tech. 60(3), 509–520 (2012).
  • [2] J. Balleieul, “Kinematic programming alternatives for redundant manipulators”, In Proc. IEEE Int. Conf. on Robotics and Auto-mation 2, 722–728, (1985).
  • [3] K. Zadarnowska and K. Tchon, “A control theory framework for performance evaluation of mobile robots”, Robotica 26 (6), 703–715 (2007).
  • [4] K. Tchon, “On kinematic singularities of nonholonomic robotic systems”, Proc. RoManSy 13, 75–84 (2000).
  • [5] Y. Yamamoto and X. Yun, “Coordinating locomotion and manipulation of a mobile manipulator”, IEEE Trans. Automatic Con-trol 39(6), 1326–1332 (1994).
  • [6] A. Mazur, “Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators”, Robotica 28 (2), 57–68 (2010).
  • [7] M. Galicki, “Inverse kinematics solution to mobile manipulators”, Int. J. Robotics Res. 22 (12), 1041–1064 (2003).
  • [8] M. Boukattaya, M. Jallouli, and T. Damak, “On trajectory tracking control for nonholonomic mobile manipulators with dynamic uncertainties and external torque forces”, Robotics and Autonomous Systems 60, 1640–1647 (2012).
  • [9] M. Boukattaya, T. Damak, and M. Jallouli, “Robust adaptive sliding mode control for mobile manipulators”, Robotics and Automation Engineering 1(1), 1–6 (2017).
  • [10] J. Peng, J. Yu, and J. Wang, “Robust adaptive tracking control for nonholonomic mobile manipulators with uncertainties”, ISA Transactions 53, 1035–1043, (2014).
  • [11] G. Zhong, Y. Kobayashi, Y. Hoshino, and T. Emaru, “System modeling and tracking control of mobile manipulator subject to dynamic interaction and uncertainty”, Nonlinear Dyn. 73, 167‒182 (2013).
  • [12] V. Padois, J.-Y. Fourquet, and P. Chiron, “Kinematic and dynamic model-based control of wheeled mobile manipulators: a unified framework for reactive approaches”, Robotica 25(2), 1‒17 (2007).
  • [13] M. Galicki, “Task space control of mobile manipulators”, Robotica 29(2), 221–232 (2010).
  • [14] M. Galicki, “Collision-free control of mobile manipulators in a task space”, Mechanical Systems and Signal Processing 25(7), 2766–2784 (2011).
  • [15] M. Galicki, “Two-stage constrained control of mobile manipulators”, Mechanism and Machine Theory 54, 18–40 (2012).
  • [16] M. Galicki, “Real-time constrained trajectory generation of mobile manipulators”, Robotics and Autonomous Systems 78, 49–62 (2016).
  • [17] V. Andaluz, F. Robeti, J.M. Toibero, and R. Carelli, “Adaptive unified motion control of mobile manipulators”, Control Engi-neering Practice 20, 1337–1352 (2012).
  • [18] Z. Li and S.S. Ge, “Fundamentals of modeling and control of mobile manipulators”, CRC (2013).
  • [19] K. Tchon, “Repeatability of inverse kinematics algorithms for mobile manipulators”, IEEE Trans. Automat. Control 47(8), 1376–1380 (2002).
  • [20] I. Duleba and I. Karcz-Duleba, “Suboptimal approximations in repeatable inverse kinematics for robot manipulators”, Bull. Pol. Ac.: Tech. 65(2), 209–217 (2017).
  • [21] H.G. Tanner and K.J. Kyriakopoulos, “Nonholonomic motion planning for mobile manipulators”, in Proc. Int. Conf. Robotics and Automation 2, 1233–1238, (2000).
  • [22] H.G. Tanner, S.G. Loizou, and K.J. Kyriakopoulos, “Nonholonomic navigation and control of cooperating mobile manipulators”, IEEE Trans. Rob. and Aut. 19(1), 53–64 (2003).
  • [23] M. Galicki, “Finite-time control of robotic manipulators”, Automatica 51, 49–54 (2015).
  • [24] M. Galicki, “Constraint finite-time control of redundant manipulators”, International Journal of Robust and Nonlinear Control27 (4), 639–660 (2016).
  • [25] M. Galicki, “Finite-time-trajectory tracking control in a task space of robotic manipulators”, Automatica 67, 165–170 (2016).
  • [26] M. Galicki, “Robust task space finite-time chattering-free control of robotic manipulators”, J. Intell. Robot. Syst. 85, 471–489 (2017).
  • [27] M.W. Spong and M. Vidyasagar, Robot dynamics and control, Wiley, New York, 1989.
  • [28] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and control, Springer Verlag, London, 2010.
  • [29] M. Galicki, “Tracking the kinematically optimal trajectories by mobile manipulators”, Journal of Intelligent & Robotic Systems93(3–4), 635–648 (2019).
  • [30] M. Galicki, “Optimal kinematic finite-time control of mobile manipulators”, in Proc. RoMoCo 2017 IEEE Explore, 129–134 (2017).
  • [31] G. Campion, G. Bastin, and B.D. Andrea-Novel, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots”, IEEE Trans. Robot. Autom. 12(1), 47–62 (1996).
  • [32] A.F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer, Dordrecht, Netherlands, 1988.
  • [33] F.L. Lewis, C.T.Abdallach, and D.M. Dawson, Control of robotic manipulators, Macmillan, New York, 1993.
  • [34] Y.G. Hong, “Finite-time stabilization and stabilizability of a class of controllable systems”, Syst. Control Lett. 46(4), 231–236 (2002).
  • [35] Kuka youbot kinematics, dynamics and 3D model [Online]. Avail-able: http://www.youbot-store.com/developers/kuka-youbotkine-matics- dynamics-and-3d-model-81.
  • [36] Y. Yamamoto and X. Yun, Coordinating locomotion and manipulation of a mobile manipulator, In: Recent trends in mobile robots, World Scientific Series in Robotic and Automated Systems, vol. 11, Editor Y.F. Zheng, Chapter 6, 1994.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb746062-5361-4914-b901-7a6a38c63810
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.