PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cavitation erosion and sliding wear of MCrAlY and NiCrMo coatings deposited by HVOF thermal spraying

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The investigation into wear resistance is an up-to-date problem from the point of view of both scientific and engineering practice. In this study, HVOF coatings such as MCrAlY (CoNiCrAlY and NiCoCrAlY) and NiCrMo were deposited on AISI 310 (X15CrNi25-20) stainless steel substrates. The microstructural properties and surface morphology of the as-sprayed coatings were examined. Cavitation erosion tests were conducted using the vibratory method in accordance with the ASTM G32 standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction coefficients were measured. The sliding and cavitation wear mechanisms were identified with the SEM-EDS method. In comparison to the NiCrMo coating, the MCrAlY coatings have lower wear resistance. The cavitation erosion resistance of the as-sprayed M(Co,Ni)CrAlY coatings is almost two times lower than that of the as-sprayed NiCrMoFeCo deposit. Moreover, the sliding wear resistance increases with increasing the nickel content as follows: CoNiCrAlY < NiCoCrAlY < NiCrMoFeCo. The mean friction coefficient of CoNiCrAlY coating equals of 0.873, which almost 50% exceed those reported for coating NiCrMoFeCo of 0.573. The as-sprayed NiCrMoFeCo coating presents superior sliding wear and cavitation erosion resistance to the as-sprayed MCrAlY (CoNiCrAlY and NiCoCrAlY) coatings.
Rocznik
Strony
26--38
Opis fizyczny
Bibliogr. 55 poz., tab., rys., wykr.
Twórcy
autor
  • Lublin University of Technology, Department of Materials Engineering, Lublin, Poland
autor
  • Lublin University of Technology, Department of Materials Engineering, Lublin, Poland
  • University of Economics and Innovation, Faculty of Transport and Computer Science, Lublin, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
autor
  • National Defense University, Turkish Naval Academy, Mechanical Engineering Department, Tuzla-Istanbul, Turkey
Bibliografia
  • 1. Krella, A.K.; Zakrzewska, D.E. Cavitation Erosion – Phenomenon and Test Rigs. Adv. Mater. Sci. 2018, 18, 15–26, doi:10.1515/adms-2017-0028.
  • 2. Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: Oxford, 1995; ISBN 0-19-509409-3.
  • 3. Soyama, H. Cavitation Peening: A Review. Metals 2020, 10, 270, doi:10.3390/met10020270.
  • 4. Dular, M.; Osterman, A. Pit clustering in cavitation erosion. Wear 2008, 265, 811–820, doi:10.1016/j.wear.2008.01.005.
  • 5. Franc, J.-P.; Michel, J.-M. Fundamentals of Cavitation; Fluid Mechanics and Its Applications; Kluwer Academic Publishers: New York, Boston, Dordrecht, London, Moscow, 2004; Vol. 76; ISBN 90-481-6618-7.
  • 6. Gottardi, G.; Tocci, M.; Montesano, L.; Pola, A. Cavitation erosion behaviour of an innovative aluminium alloy for Hybrid Aluminium Forging. Wear 2018, 394–395, 1–10, doi:10.1016/j.wear.2017.10.009.
  • 7. Szala, M. Application of computer image analysis software for determining incubation period of cavitation erosion – preliminary results. ITM Web Conf. 2017, 15, 06003, doi:10.1051/itmconf/20171506003.
  • 8. Zakrzewska, D.E.; Krella, A.K. Cavitation Erosion Resistance Influence of Material Properties. Adv. Mater. Sci. 2019, 19, 18–34, doi:10.2478/adms-2019-0019.
  • 9. Lin, J.; Wang, Z.; Cheng, J.; Kang, M.; Fu, X.; Hong, S. Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc-Sprayed Fe-Based Amorphous/Nanocrystalline Coatings. Coatings 2017, 7, 200, doi:10.3390/coatings7110200.
  • 10. Becker, W.T.; Shipley, R.J. ASM Handbook, Volume 11: Failure Analysis and Prevention; 10 edition.; ASM International: Materials Park, Ohio, 2002; ISBN 978-0-87170-704-8.
  • 11. ASM Handbook Volume 18: Friction, Lubrication, and Wear Technology; ASM Handbook Vol-ume 18:; ASM International, 1992; Vol. 18; ISBN 978-0-87170-380-4.
  • 12. Szala, M.; Szafran, M.; Macek, W.; Marchenko, S.; Hejwowski, T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Adv. Sci. Technol. Res. J. 2019, 13, doi:10.12913/22998624/113244.
  • 13. Jegadeeswaran, N.; Ramesh, M.R.; Bhat, K.U. Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25% (Cr3C2-25(Ni20Cr)) + NiCrAlY Coating. Int. J. Corros. 2013, 2013, 824659, doi:10.1155/2013/824659.
  • 14. Szymański, K.; Hernas, A.; Moskal, G.; Myalska, H. Thermally sprayed coatings resistant to ero-sion and corrosion for power plant boilers - A review. Surf. Coat. Technol. 2015, 268, 153–164, doi:10.1016/j.surfcoat.2014.10.046.
  • 15. Janicki, D. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying. Materials 2018, 11, 75, doi:10.3390/ma11010075.
  • 16. Singh, J.; Kumar, S.; Mohapatra, S.K. An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders. Wear 2019, 438–439, doi:10.1016/j.wear.2019.01.082.
  • 17. Singh, G.; Bala, N.; Chawla, V. Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni-22Cr-10Al-1Y and Ni-22Cr-10Al-1Y-SiC (N) coatings on ASTM-SA213-T22 steel. Int. J. Miner. Metall. Mater. 2020, 27, 401–416, doi:10.1007/s12613-019-1946-y.
  • 18. Hattori, S.; Mikami, N. Cavitation erosion resistance of stellite alloy weld overlays. Wear 2009, 267, 1954–1960, doi:10.1016/j.wear.2009.05.007.
  • 19. Szala, M.; Hejwowski, T.; Lenart, I. Cavitation erosion resistance of Ni-Co based coatings. Adv. Sci. Technol. Res. J. 2014, 8, 36–42, doi:10.12913/22998624.1091876.
  • 20. Hejwowski, T. Sliding wear resistance of Fe-, Ni- and Co-based alloys for plasma deposition. Vacuum 2006, 80, 1326–1330, doi:10.1016/j.vacuum.2006.01.037.
  • 21. Maslarevic, A.; Bakic, G.M.; Djukic, M.B.; Rajicic, B.; Maksimovic, V.; Pavkov, V. Microstruc-ture and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes. Trans. Indian Inst. Met. 2020, 73, 259–271, doi:10.1007/s12666-019-01831-9.
  • 22. Janicki, D.M. High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings. Solid State Phenom. 2013, 199, 587–592, doi:10.4028/www.scientific.net/SSP.199.587.
  • 23. Lavigne, S.; Pougoum, F.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.E.; Schulz, R. Cavitation erosion behavior of HVOF CaviTec coatings. Wear 2017, 386–387, 90–98, doi:10.1016/j.wear.2017.06.003.
  • 24. Zhang, P.; Jiang, J.H.; Ma, A.B.; Wang, Z.H.; Wu, Y.P.; Lin, P.H. Cavitation Erosion Resistance of WC-Cr-Co and Cr3C2-NiCr Coatings Prepared by HVOF. Adv. Mater. Res. 2007, 15–17, 199–204, doi:10.4028/www.scientific.net/AMR.15-17.199.
  • 25. Szala, M.; Hejwowski, T. Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings. Coatings 2018, 8, 254, doi:10.3390/coatings8070254.
  • 26. Taillon, G.; Pougoum, F.; Lavigne, S.; Ton-That, L.; Schulz, R.; Bousser, E.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.-E. Cavitation erosion mechanisms in stainless steels and in composite metal–ceramic HVOF coatings. Wear 2016, 364–365, 201–210, doi:10.1016/j.wear.2016.07.015.
  • 27. Deng, W.; An, Y.; Hou, G.; Li, S.; Zhou, H.; Chen, J. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings. Ultrason. Sonochem. 2018, 46, 1–9, doi:10.1016/j.ultsonch.2018.04.004.
  • 28. Szala, M.; Dudek, A.; Maruszczyk, A.; Walczak, M.; Chmiel, J.; Kowal, M. Effect of atmospher-ic plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance. Acta Phys. Pol. A 2019, 136, 335–341, doi:10.12693/APhysPolA.136.335.
  • 29. Sugiyama, K.; Nakahama, S.; Hattori, S.; Nakano, K. Slurry wear and cavitation erosion of ther-mal-sprayed cermets. Wear 2005, 258, 768–775, doi:10.1016/j.wear.2004.09.006.
  • 30. Łatka, L.; Szala, M.; Michalak, M.; Pałka, T. Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13%TiO2 coatings. Acta Phys. Pol. A 2019, 136, 342–347, doi:10.12693/APhysPolA.136.342.
  • 31. Zhou, W.; Zhou, K.; Li, Y.; Deng, C.; Zeng, K. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings. Appl. Surf. Sci. 2017, 416, 33–44, doi:10.1016/j.apsusc.2017.04.132.
  • 32. Saeidi, S.; Voisey, K.T.; McCartney, D.G. Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. J. Therm. Spray Technol. 2011, 20, 1231–1243, doi:10.1007/s11666-011-9666-5.
  • 33. Singh, J.; Kumar, S.; Mohapatra, S.K. Tribological performance of Yttrium (III) and Zirconium (IV) ceramics reinforced WC–10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel. Ceram. Int. 2019, 45, 23126–23142, doi:10.1016/j.ceramint.2019.08.007.
  • 34. Hong, S.; Wu, Y.; Wang, Q.; Ying, G.; Li, G.; Gao, W.; Wang, B.; Guo, W. Microstructure and cavitation–silt erosion behavior of high-velocity oxygen–fuel (HVOF) sprayed Cr3C2–NiCr coat-ing. Surf. Coat. Technol. 2013, 225, 85–91, doi:10.1016/j.surfcoat.2013.03.020.
  • 35. Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P.; Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17–52, doi:10.3390/coatings1010017.
  • 36. Michalak, M.; Łatka, L.; Sokołowski, P.; Niemiec, A.; Ambroziak, A. The Microstructure and Selected Mechanical Properties of Al2O3 + 13 wt % TiO2 Plasma Sprayed Coatings. Coatings 2020, 10, 173, doi:10.3390/coatings10020173.
  • 37. Żórawski, W.; Kozerski, S. Scuffing resistance of plasma and HVOF sprayed WC12Co and Cr3C2-25(Ni20Cr) coatings. Surf. Coat. Technol. 2008, 202, 4453–4457, doi:10.1016/j.surfcoat.2008.04.045.
  • 38. Ozimina, D.; Madej, M.; Kałdoński, T. The Wear Resistance of HVOF Sprayed Composite Coat-ings. Tribol. Lett. 2011, 41, 103–111, doi:10.1007/s11249-010-9684-3.
  • 39. Benegra, M.; Santana, A.L.B.; Maranho, O.; Pintaude, G. Effect of Heat Treatment on Wear Re-sistance of Nickel Aluminide Coatings Deposited by HVOF and PTA. J. Therm. Spray Technol. 2015, 24, 1111–1116, doi:10.1007/s11666-015-0266-7.
  • 40. Potthoff, A.; Kratzsch, R.; Barbosa, M.; Kulissa, N.; Kunze, O.; Toma, F.-L. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying. J. Therm. Spray Technol. 2018, 27, 710–717, doi:10.1007/s11666-018-0709-z.
  • 41. Blum, M.; Krieg, P.; Killinger, A.; Gadow, R.; Luth, J.; Trenkle, F. High Velocity Suspension Flame Spraying (HVSFS) of Metal Suspensions. Materials 2020, 13, 621, doi:10.3390/ma13030621.
  • 42. Tejero-Martin, D.; Pala, Z.; Rushworth, S.; Hussain, T. Splat formation and microstructure of solution precursor thermal sprayed Nb-doped titanium oxide coatings. Ceram. Int. 2020, 46, 5098–5108, doi:10.1016/j.ceramint.2019.10.253.
  • 43. Kiilakoski, J.; Musalek, R.; Lukac, F.; Koivuluoto, H.; Vuoristo, P. Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ- and macroscopic bending. J. Eur. Ce-ram. Soc. 2018, 38, 1908–1918, doi:10.1016/j.jeurceramsoc.2017.11.056.
  • 44. Pawłowski, L. 5 - Application of solution precursor spray techniques to obtain ceramic films and coatings. In Future Development of Thermal Spray Coatings; Espallargas, N., Ed.; Woodhead Publishing, 2015; pp. 123–141 ISBN 978-0-85709-769-9.
  • 45. Myalska, H.; Lusvarghi, L.; Bolelli, G.; Sassatelli, P.; Moskal, G. Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition. Surf. Coat. Technol. 2019, 371, 401–416, doi:10.1016/j.surfcoat.2018.09.017.
  • 46. Vijay, S.; Wang, L.; Lyphout, C.; Nylen, P.; Markocsan, N. Surface characteristics investigation of HVAF sprayed cermet coatings. Appl. Surf. Sci. 2019, 493, 956–962, doi:10.1016/j.apsusc.2019.07.079.
  • 47. Nowak, W.J.; Ochał, K.; Wierzba, P.; Gancarczyk, K.; Wierzba, B. Effect of Substrate Rough-ness on Oxidation Resistance of an Aluminized Ni-Base Superalloy. Metals 2019, 9, 782, doi:10.3390/met9070782.
  • 48. Szala, M.; Beer-Lech, K.; Gancarczyk, K.; Kilic, O.B.; Pędrak, P.; Özer, A.; Skic, A. Microstruc-tural Characterisation of Co-Cr-Mo Casting Dental Alloys. Adv. Sci. Technol. Res. J. 2017, 11, 76–82, doi:10.12913/22998624/80901.
  • 49. Szala, M.; Walczak, M. Cavitation erosion and sliding wear resistance of HVOF coatings. Weld. Technol. Rev. 2018, 90, doi:10.26628/wtr.v90i10.964.
  • 50. ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus; ASTM International: West Conshohocken, Philadelphia: PA, USA, 2010;
  • 51. Szala, M.; Walczak, M.; Pasierbiewicz, K.; Kamiński, M. Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate. Coatings 2019, 9, 340, doi:10.3390/coatings9050340.
  • 52. Davis, J.R. Handbook of Thermal Spray Technology; ASM International: OH, USA, 2004; ISBN 978-0-87170-795-6.
  • 53. Maruszczyk, A.; Dudek, A.; Szala, M. Research into Morphology and Properties of TiO2 – NiAl Atmospheric Plasma Sprayed Coating. Adv. Sci. Technol. Res. J. 2017, 11, 204–210, doi:10.12913/22998624/76450.
  • 54. Cabral-Miramontes, J.A.; Gaona-Tiburcio, C.; Almeraya-Calderón, F.; Estupiñan-Lopez, F.H.; Pedraza-Basulto, G.K.; Poblano-Salas, C.A. Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry. Int. J. Corros. 2014, 2014, 703806, doi:10.1155/2014/703806.
  • 55. Walczak, M.; Pieniak, D.; Niewczas, A.M. Effect of recasting on the useful properties CoCrMoW alloy. Eksploat. Niezawodn. – Maint. Reliab. 2014, 16, 330–336.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb73861a-35d1-4b96-ae65-e4ecc8b53134
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.