PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the harbour basin tranquillity in the Genaveh Port development plan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Genaveh commercial port was placed on the agenda of the Iranian PMO (ports and maritime organization) to consider economic, commercial and residential development in Bushehr province and specifically in Genaveh city. In order to increase the water capacity of the port, it is necessary to build a new harbour basin for exploitation and commercial purposes at a depth of 5 to 6 meters by extending the existing jetties arms in front of the port. This research aims to investigate the harbour basin’s tranquillity for providing vessels with safe berthing. For this purpose, three modules, namely the flow model (FM), spectral wave (SW) and Boussinesq waves model (BW) from the MIKE 21 software package, were utilized. According to the monitoring data, which is provided by the Iranian PMO, the harbour basin’s tranquillity based on the prevailing wave directions was investigated. Based on the diffraction graph in the harbour basin, the results showed that, according to the percentage of permissible diffraction recommended by different valid regulations, there is a need to modify the geometry of the breakwater arms to increase the harbour basin’s tranquillity at the port in the development plan.
Rocznik
Tom
Strony
145--155
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran
  • Department of Civil Engineering, University of Tehran, Tehran, Iran
  • Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran
  • International School of Ocean Science and Engineering, Harbin Institute of Technology, Weihai, China
autor
  • International School of Ocean Science and Engineering, Harbin Institute of Technology, Weihai, China
Bibliografia
  • 1. G.P.Tsinker, “Port planning,” in Port engineering: planning, construction, maintenance, and security, pp. 7-64, 2004.
  • 2. M. Luo, L. Liu, and F. Gao, “Post-entry container port capacity expansion,” Transportation Research Part B: Methodological, vol. 46, no. 1, pp. 120-138, 2012, https://doi.org/ 10.1016/ j.trb.2011.09.001.
  • 3. K. H. Ryu, W. M. Jeong, J.-E. Oh, W.-D. Baek, and Y. S. Chang, “Wave Height Reduction Inside Pohang New Port, Korea, Due to the Construction of a Detached Breakwater,” Journal of Marine Science and Engineering, vol. 10, no. 10, p. 1537, 2022, https://doi.org/10.3390/jmse10101537.
  • 4. Y. Goda, Random seas and design of maritime structures. World Scientific Publishing, 2010.
  • 5. X. Zhang, J. Lin, Z. Guo, and T. Liu, “Vessel transportation scheduling optimization based on channel–berth coordination,” Ocean Engineering, vol. 112, pp. 145-152, 2016, https://doi.org/10.1016/j.oceaneng.2015.12.011.
  • 6. M. Kankal, and Ö. Yüksek, “Artificial neural network approach for assessing harbor tranquility: The case of Trabzon Yacht Harbor, Turkey,” Applied Ocean Research, vol. 38, pp. 23-31, 2012, https://doi.org/10.1016/j.apor.2012.05.009.
  • 7. J. K. Panigrahi, C. Padhy, and A. Murty, “Inner harbour wave agitation using Boussinesq wave model,” International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 1, pp. 70-86, 2015, https://doi.org/10.2478/IJNAOE-2015-0006.
  • 8. D. González-Marco, J. P. Sierra, O. F. de Ybarra, and A. Sánchez-Arcilla, “Implications of long waves in harbor management: The Gijón port case study,” Ocean & Coastal Management, vol. 51, no. 2, pp. 180-201, 2008, https://doi. org/10.1016/j.ocecoaman.2007.04.001.
  • 9. M. B. Abbott, A. D. McCowan, and I. R. Warren, “Accuracy of short-wave numerical models,” Journal of Hydraulic Engineering, vol. 110, no. 10, pp. 1287-1301, 1984, https:// doi.org/ 10.1061/ (ASCE)0733-9429(1984)110:10(1287).
  • 10. G. Wei, and J. T. Kirby, “Time-dependent numerical code for extended Boussinesq equations,” Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 121, no. 5, pp. 251-261, 1995, https://doi.org/10.1061/ (ASCE)0733-950X(1995)121:5(251).
  • 11. S. Beji, and K. Nadaoka, “A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth,” Ocean Engineering, vol. 23, no. 8, pp. 691-704, 1996, https://doi.org/10.1016/0029-8018(96)84408-8.
  • 12. K. Barve, L. Ranganath, M. Karthikeyan, S. Kori, and M. Kudale, “Wave Tranquility and Littoral Studies for Development of a Mini Fishing Harbour,” Aquatic Procedia, vol. 4, pp. 72-78, 2015, https://doi.org/10.1016/j.aqpro.2015.02.011.
  • 13. G. Diaz-Hernandez, B. R. Fernández, E. Romano-Moreno, and J. L. Lara, “An improved model for fast and reliable harbour wave agitation assessment,” Coastal Engineering, vol. 170, p. 104011, 2021, https://doi.org/10.1016/j. coastaleng.2021.104011.
  • 14. Y. S. Li, S.-X. Liu, O. Wai, and Y.-X. Yu, “Wave concentration by a navigation channel,” Applied Ocean Research, vol. 22, no. 4, pp. 199-213, 2000, https://doi.org/10.1016/ S0141-1187(00)00013-4.
  • 15. Y. S. Li, S.-X. Liu, Y.-X. Yu, and G.-Z. Lai, “Numerical modeling of Boussinesq equations by finite element method,” Coastal Engineering, vol. 37, no. 2, pp. 97-122, 1999, https:// doi.org/ 10.1016/S0378-3839(99)00014-9.
  • 16. S. Abohadima, and M. Isobe, “Linear and nonlinear wave diffraction using the nonlinear time dependent mild slope equations,” Coastal Engineering, vol. 37, no. 2, pp. 175-192, 1999, https://doi.org/10.1016/S0378-3839(99)00020-4.
  • 17. D. R. Fuhrman, H. B. Bingham, and P. A. Madsen, “Nonlinear wave–structure interactions with a high-order Boussinesq model,” Coastal Engineering, vol. 52, no. 8, pp. 655-672, 2005, https://doi.org/10.1016/j.coastaleng.2005.03.001.
  • 18. M. Khalifa, “Calmness study for container handling ports with open basin systems using numerical modeling,” Marine Sciences, vol. 20, no. 1, 2009.
  • 19. Y.-T. Kim, and J.-I. Lee, “Construction of Fishery Port Considering Harbor Calmness, Water Circulation and Stability: Case Study,” Journal of Coastal Research, vol. 64, pp. 641-645, 2011.
  • 20. K. Belibassakis, V. Tsoukala, and V. Katsardi, “Threedimensional wave diffraction in the vicinity of openings in coastal structures,” Applied Ocean Research, vol. 45, pp. 40-54, 2014, https://doi.org/10.1016/j.apor.2013.12.005.
  • 21. M. Sedigh, R. Tomlinson, N. Cartwright, and A. EtemadShahidi, “Numerical modelling of the Gold Coast Seaway area hydrodynamics and littoral drift,” Ocean Engineering, vol. 121, pp. 47-61, 2016, https://doi.org/10.1016/j.oceaneng. 2016.05.002.
  • 22. M. T. Tay, S. B. Mitchell, J. Chen, and J. Williams, “Numerical modelling approach for the management of seasonal influenced river channel entrance,” Ocean & Coastal Management, vol. 130, pp. 79-94, 2016, https://doi. org/10.1016/j.ocecoaman.2016.06.004.
  • 23. D. H. Peregrine, “Long waves on a beach,” Journal of Fluid Mechanics, vol. 27, no. 4, pp. 815-827, 1967, https://doi. org/10.1017/S0022112067002605.
  • 24. H. A. Schäffer, and P. A. Madsen, “Further enhancements of Boussinesq-type equations,” Coastal Engineering, vol. 26, no. 1-2, pp. 1-14, 1995, https://doi.org/10.1016/0378-3839(95)00017-2.
  • 25. G. Kim, C. Lee, and K.-D. Suh, “Extended Boussinesq equations for rapidly varying topography,” Ocean Engineering, vol. 36, no. 11, pp. 842-851, 2009, https://doi.org/10.1016/j. oceaneng .2009.05.002.
  • 26. C. Greenwood, D. Christie, V. Venugopal, J. Morrison, and A. Vogler, “Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models,” Energy, vol. 113, pp. 258-266, 2016, https://doi. org/10.1016/j.energy.2016.06.141.
  • 27. M. Moeini, A. Etemad-Shahidi, and V. Chegini, “Wave modeling and extreme value analysis off the northern coast of the Persian Gulf,” Applied Ocean Research, vol. 32, no. 2, pp. 209-218, 2010, https://doi.org/10.1016/j.apor.2009.10.005.
  • 28. M. Guerrini, G. Bellotti, Y. Fan, and L. Franco, “Numerical modelling of long waves amplification at Marina di Carrara Harbour,” Applied Ocean Research, vol. 48, pp. 322-330, 2014, https://doi.org/10.1016/j.apor.2014.10.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb71c6cc-a36e-425b-a25d-72e52fcdca1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.