PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generative adversarial network and convolutional neural network-based EEG imbalanced classification model for seizure detection

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automatic seizure detection technology is of great significance to reduce workloads of neurologists for epilepsy diagnosis and treatments. Imbalanced classification is a challenge in seizure detection from long-term continuous EEG recordings, as the durations of the seizure events are much shorter than the non-seizure periods. An imbalanced deep learning model is proposed in this paper to improve the performance of seizure detection. To modify imbalanced EEG data distribution, a generative adversarial network (GAN) that is a strong candidate for data enhancement is built to produce the seizure-period EEG data used for forming a more balanced training set. Next, a pyramidal one-dimensional convolutional neural network (1DCNN) is designed to deal with 1D EEG signals and trained on the augmented training set that consists of both original and generated EEG data. Compared to the conventional 2DCNNs, the deep architecture of the 1DCNN reduces the training parameters so as to greatly increase the training speed. The proposed method is evaluated on three publicly available EEG databases. After data augmentation by the GAN, the designed 1DCNN shows much better classification for seizure detection, achieving competitive results over the three EEG databases, which demonstrates the generalizability of this method across different databases. Comparison with other published methods indicates its enhanced detection performance for imbalanced EEG data.
Twórcy
autor
  • Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
  • Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
autor
  • Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
autor
  • Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, China
autor
  • School of Physics and Electronics, Shandong Normal University, University Science and Technology Park Road on the 1st, Changqing District, Ji’nan, Shandong 250358, China
Bibliografia
  • [1] Geier C, Lehnertz K. Which brain regions are important for seizure dynamics in epileptic networks? influence of link identification and EEG recording montage on node centralities. Int J Neural Syst 2017;27(1):1650033.
  • [2] Beghi E, Giussani G, Sander JW. The natural history and prognosis of epilepsy. Epileptic Disord 2015;17(3):243–53.
  • [3] Mahmoodian N, Boese A, Friebe M, Haddadnia J. Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure 2019;66:4–11.
  • [4] Keezer MR, Sisodiya SM, Sander JW. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol 2016;15(1):106–15.
  • [5] World Health Organization. seizure [cited April 8, 2016], http://www.who.int/mediacentre/factsheets/fs999/en/, 2016.
  • [6] Löscher W, Potschka H, Sisodiya SM, Vezzani A, Barker EL. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 2020;72(3):606–38.
  • [7] Niedermeyer E, Silva FHLD. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. (Wolters Kluwer, 2004), Lippincott Williams & Wilkins, Philadelphia, p. 526.
  • [8] Gandhi T, Panigrahi BK, Bhatia M, Anand S. Expert model for detection of epileptic activity in EEG signature. Expert Syst Appl 2010;37(4):3513–20.
  • [9] Sanei S, Chambers JA. EEG signal processing. UK: Cardiff University, lohn Wiley & Sons, Ltd; 2007.
  • [10] Symonds JD, Zuberi SM, Johnson MR. Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Curr Opin Neurol 2017;30(2):193–9.
  • [11] McSharry PE, He T, Smith LA, Tarassenko L. Linear and nonlinear methods for automatic seizure detection in scalp electroencephalogram recordings. Med Biol Eng Comput 2002;40(4):447–61.
  • [12] Yuan Qi, Zhou W, Zhang L, Zhang F, Xu F, Leng Y, et al. Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure 2017;50:99–108.
  • [13] Husari KS, Dubey D. Autoimmune epilepsy. Neurotherapeutics 2019;16(3):685–702.
  • [14] Martinez-del-Rincon J, Santofimia MJ, del Toro X, Barba J, Romero F, Navas P, et al. Non-linear classifiers applied to EEG analysis for epilepsy seizure detection. Expert Systems Appl 2017;86:99–112.
  • [15] Kaleem M, Guergachi A, Krishnan S. Patient-specific seizure detection in long-term EEG using wavelet decomposition. Biomed Signal Process Control 2018;46:157–65.
  • [16] Vezzani A, Fujinami RS, White HS, Preux P-M, Blümcke I, Sander JW, et al. Infections, inflammation and epilepsy. Acta Neuropathol 2016;131(2):211–34.
  • [17] Janjarasjitt S. Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM. Med Biol Eng Comput 2017;55(10):1743–61.
  • [18] Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2018;667:27–39.
  • [19] Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 1982;54(5): 530–40.
  • [20] Park C, Choi G, Kim J, et al. Epileptic seizure detection for multi-channel EEG with deep convolutional neural network. In: IEEE International Conference on Electronics Information and Communication. p. 1–5.
  • [21] Emami A, Kunii N, Matsuo T, Shinozaki T, Kawai K, Takahashi H. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. NeuroImage: Clinical 2019;22:101684.
  • [22] Liang W, Pei H, Cai Q, Wang Y. Scalp EEG epileptogenic zone recognition and localization based on long-term recurrent convolutional network. Neurocomputing 2020;396:569–76.
  • [23] Daoud H, Bayoumi MA. Efficient epileptic seizure prediction based on deep learning. Trans Biomed Circuits Systems 2019;13:804–13.
  • [24] Ahmedt-Aristizabal D, Fookes C, Nguyen K, et al. Deep classification of epileptic signals. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. p. 332–5.
  • [25] Xu YK, Yang J, Zhao S, Wu H, Sawan M. An end-to-end deep learning approach for epileptic seizure prediction. In: 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). p. 266–70.
  • [26] Truong ND, Kuhlmann L, Bonyadi MR, Querlioz D, Zhou L, Kavehei O. Epileptic seizure forecasting with generative adversarial networks. IEEE Access 2019;7:143999–4009.
  • [27] Petrosian A, Prokhorov D, Homan R, Dasheiff R, Wunsch D. Recurrent neural network-based prediction of epileptic seizures in intra-and extracranial EEG. Neurocomputing 2000;30(1-4):201–18.
  • [28] Wei Z, Zou J, Zhang J, Xu J. Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain. Biomed Signal Process Control 2019;53:101551.
  • [29] Thara DK, PremaSudha BG, Xiong F. Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques. Pattern Recogn Lett 2019;128(1):544–50.
  • [30] Takahashi H, Emami A, Shinozaki T, Kunii N, Matsuo T, Kawai K. Convolutional neural network with autoencoder-assisted multiclass labelling for seizure detection based on scalp electroencephalography. Comput Biol Med 2020;125:104016.
  • [31] Ward M, Malmsten K, Salamy H, Min CH. Data balanced bagging ensemble of convolutional-LSTM neural networks for time series data classification with an imbalanced dataset. In: IEEE International Symposium on Circuits and Systems (ISCAS). p. 1–5.
  • [32] Birjandtalab J, Jarmale VN, Nourani M, Harvey J. Imbalance learning using neural networks for seizure detection. In: IEEE Biomedical Circuits and Systems Conference (BioCAS). p. 1–4.
  • [33] Masum M et al. Analysis of sampling techniques towards epileptic seizure detection from imbalanced dataset. In: IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). p. 684–92.
  • [34] Alzaid M. A comparative study between classical feature engineering and RNNs for seizure detection in imbalanced data. In: IEEE Signal Processing in Medicine and Biology Symposium (SPMB). p. 1–5.
  • [35] Antoniou A, Storkey A, and Edwards H. Data augmentation generative adversarial networks. arXiv:1711.04340, Mar. 2018.
  • [36] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets, in Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp.2672-2680.
  • [37] Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018;321:321–31.
  • [38] Hartmann KG, Schirrmeister RT, Ball T. EEGGAN: Generative adversarial networks for electroencephalographic (EEG) brain signals. arXiv:1806.01875, Jun. 2018.
  • [39] Esteban C, Hyland SL, Rätsch G. Real-valued (medical) time series generation with recurrent conditional GANs. arXiv:1706.02633, Dec. 2017.
  • [40] Qin X, Wang Z, Yao J, Zhou Q, Zhao P-F, Wang Z-Y, et al. Using a one-dimensional convolutional neural network with a conditional generative adversarial network to classify plant electrical signals. Comput Electron Agric 2020;174:105464.
  • [41] Zhou Z, Zhai X, Tin C. Fully automatic electrocardiogram classification system based on generative adversarial network with auxiliary classifier. Expert Syst Appl 2021;174:114809.
  • [42] Liu S, Yu M, Li M, Xu Q. The research of virtual face based on Deep Convolutional Generative Adversarial Networks using TensorFlow. Phys A 2019;521:667–80.
  • [43] Chen Z, Wang C, Wu H, Shang K, Wang J. DMGAN: Discriminative Metric-based Generative Adversarial Networks. Knowl-Based Syst 2020;192:105370.
  • [44] Zhong G, Gao W, Liu Y, Yang Y, Wang D-H, Huang K. Generative adversarial networks with decoder-encoder output noises. Neural Networks 2020;127:19–28.
  • [45] http://physionet.org/physiobank/database/chbmit/.
  • [46] Tsiouris , Pezoulas VC, Zervakis M, Konitsiotis S, Koutsouris DD, Fotiadis DI. A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med 2018;99:24–37.
  • [47] Andrzejak R, Lehnertz K, Mormann F, Rieke C, David P, Elger C. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys Rev E 2001;64(6):061907-1-8.
  • [48] Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 2007;34(4):1600–11.
  • [49] Li Y, Zou Li, Jiang Li, Zhou X. Fault diagnosis of rotating machinery based on combination of deep belief network and one-dimensional convolutional neural network. IEEE Access 2019;7:165710–23.
  • [50] De Vries Z, Locke E, Hoda M, Moravek D, Phan K, Stratton A, et al. Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability. Spine J 2021;21 (7):1135–42.
  • [51] Zabihi M, Kiranyaz S, Rad A, et al. Analysis of highdimensional phase space via Poincaré section for patient-specific seizure detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2016;24:386–98.
  • [52] Orosco L, Correa AG, Diez P, Laciar E. Patient non-specific algorithm for seizures detection in scalp EEG. Comput Biol Med 2016;71:128–34.
  • [53] Samiee K, Kovács P, Gabbouj M. Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowl-Based Syst 2017;118:228–40.
  • [54] Chen D, Wan S, Xiang J, Bao FS, Chung CK. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS ONE 2017;12(3): e0173138.
  • [55] Zhang Y, Guo Y, Yang Po, Chen W, Lo B. Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network. Biomed Health Informatics 2020;24(2):465–74.
  • [56] Kaziha O, Bonny T. A convolutional neural network for seizure detection. Advances in Science and Engineering Technology International Conferences (ASET), 2020.
  • [57] Ciurea A, Manoila C, Tautan A, Ionescu B. Low latency automated epileptic seizure detection: individualized vs. global approaches. International Conference on e-Health and Bioengineering (EHB), 2020.
  • [58] Zanetti R, Aminifar A, Atienza D. Robust epileptic seizure detection on wearable systems with reduced false-alarm rate. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). p. 4248–51.
  • [59] Wang X, Wang X, Liu W, Chang Z, Kärkkäinen T, Cong F. One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG. Neurocomputing 2021;459:212–22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb6d0723-865f-4954-af8b-6ee6ad4dd3d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.