Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this case study is to generate several poly(ethylene glycol) diacrylate-based hydrogels using additive manufacturing processes. The interest here is in determining different material properties. The test specimens are produced using a commercial stereolithography system. For this purpose, three formulations are prepared. The basis in each case is PEGDA with average molecular weights of 700 Mn, 575 Mn and 250 Mn. A photoinitiator and a UV absorber are added to ensure spatial and temporal cross-linking. Furthermore, the formulations are tested for their material properties according to ISO standards using tensile, compression and hardness tests. An equivalence can be found in the tensile and compression tests. The results with the molecular weights of 700 Mn and 575 Mn show values close to each other. However, the results of the material tests with the molecular weight of 250 Mn are ten times higher. The Shore A hardness values also correlate with the previous tests. These results between molecular weight and material property are particularly striking. A novel aspect of this method could be that the properties determined of these tailor-made high-performance polymers can be applied to different areas of application in an organism.
Czasopismo
Rocznik
Tom
Strony
33--41
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Applied Sciences Stralsund, Zur Schwedenschanze 15, Stralsund, 18435, Germany
autor
- Faculty of Mechanical Engineering, University of Applied Sciences Stralsund, Zur Schwedenschanze 15, Stralsund, 18435, Germany
autor
- Faculty of Mechanical Engineering, University of Applied Sciences Stralsund, Zur Schwedenschanze 15, Stralsund, 18435, Germany
autor
- Faculty of Mechanical Engineering, University of Applied Sciences Stralsund, Zur Schwedenschanze 15, Stralsund, 18435, Germany
Bibliografia
- 1. D. Shilo, O. Emodi, O. Blanc, D. Noy, and A. Rachmiel, “Printing the future-updates in 3D printing for surgical applications,” Rambam Maimonides medical journal, vol. 9, no. 3, 2018.
- 2. R. Raschke and M. Vehse, “Polyamide based wrist orthosis generated by selective laser sintering,”Transactions on Additive Manufacturing Meets Medicine, vol. 1, no. 1, 2019.
- 3. Drug delivery from poly(ethylene glycol) diacrylate scaffolds produced by DLC based micro‐stereolithography: Wiley Online Library, 2014.
- 4. D. C. Ackland, D. Robinson, M. Redhead, P. V. S. Lee, A. Moskaljuk, and G. Dimitroulis, “A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation,” Journal of the mechanical behavior of biomedical materials, vol. 69, pp. 404–411, 2017.
- 5. Characterization of solid UV cross-linked PEGDA for biological applications: IEEE, 2013.
- 6. B. You, Q. Li, H. Dong, T. Huang, X. Cao, and H. Liao, “Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair,” Journal of materials science & technology, vol. 34, no. 6, pp. 1016–1025, 2018.
- 7. P. Bolduan, “Synthese und Charakterisierung von biologisch-aktiven Hydrogelen und deren Anwendung in der Stammzellforschung,” Universitätsbibliothek Dortmund, 2018.
- 8. J. Zhu and R. E. Marchant, “Design properties of hydrogel tissue-engineering scaffolds,” Expert review of medical devices, vol. 8, no. 5, pp. 607–626, 2011.
- 9. S. Kalakkunnath, D. S. Kalika, H. Lin, and B. D. Freeman, “Viscoelastic characteristics of UV polymerized poly(ethylene glycol) diacrylate networks with varying extents of crosslinking,” Journal of Polymer Science Part B: Polymer Physics, vol. 44, no. 15, pp. 2058–2070, 2006.
- 10. A. Priola, G. Gozzelino, F. Ferrero, and G. Malucelli, “Properties of polymeric films obtained from uv cured poly(ethylene glycol) diacrylates,” Polymer, vol. 34, no. 17, pp. 3653–3657, 1993.
- 11. J. Wróblewska-Krepsztul, T. Rydzkowski, I. Michalska-Pożoga, and V. K. Thakur, “Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning,” Nanomaterials (Basel, Switzerland), vol. 9, no. 3, 2019, doi: 10.3390/nano9030404.
- 12. J. Wróblewska-Krepsztul, T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, and V. K. Thakur, “Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment,” International Journal of Polymer Analysis and Characterization, vol. 23, no. 4, pp. 383–395, 2018, doi: 10.1080/1023666X.2018.1455382.
- 13. K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials, vol. 23, no. 22, pp. 4307–4314, 2002, doi: 10.1016/S0142-9612(02)00175-8.
- 14. S. F. Klimaschewski and M. Vehse, “3D printing of hydrogel scaffolds based on poly (ethylene glycol) diacrylate,” Transactions on Additive Manufacturing Meets Medicine, vol. 1, no. 1, 2019.
- 15. R. Mau, J. Nazir, S. John, and H. Seitz, “Preliminary Study on 3D printing of PEGDA Hydrogels for Frontal Sinus Implants using Digital Light Processing (DLP),” Current Directions in Biomedical Engineering, vol. 5, no. 1, pp. 249–252, 2019.
- 16. V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, and O. Akkus, “Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography,” Annals of biomedical engineering, vol. 45, no. 1, pp. 286–296, 2017.
- 17. J. S. Temenoff, K. A. Athanasiou, R. G. Lebaron, and A. G. Mikos, “Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo (poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering,” Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 59, no. 3, pp. 429–437, 2002.
- 18. S. F. Klimaschewski, R. Raschke, and M. Vehse, “Additive manufacturing for health technology applications,” Journal of Mechanical and Energy Engineering, vol. 3, 2019.
- 19. Characterization of solid UV cross-linked PEGDA for biological applications: IEEE, 2013.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb6b4c51-318e-4bcb-a9c1-aab5f3bbcb87