PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Observations of the aerosol particle number concentration in the marine boundary layer over the south-eastern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuous measurements of the aerosol particle number concentration (PNC) in the size range from 4.5 nm to 2 µm were performed at the Preila marine background site during 2008–2009. The concentration maxima in summer was twice the average (2650±50 cm-3). A trajectory-based approach was applied for source identification. Potential Source Contribution Function (PSCF) analysis was performed to estimate the possible contribution of long-range and local PNC transport to PNC concentrations recorded at the marine background site. The PSCF results showed that the marine boundary layer was not seriously affected by long-range transport, but that local transport of air pollution was recognized as an important factor. North Atlantic and Sea-Marine type clusters respectively represented 32.1% and 17.9% of the total PNC spectra and were characterized by the lowest PNCs (1080±1340 and 1210±1040 cm-3 respectively) among all clusters. Wavelet transformation analysis of 1-h aerosol PNC indicated that while the 16-h scale was a constant feature of aerosol PNC evolution in spring, the longer (∼60-h) scales appeared mainly over the whole year (except June). Principal component analysis (PCA) revealed a strong correlation between PNC and NaCl, highlighting the influence of sea-salt aerosols. In addition, PCA also showed that PNC depended on optical and meteorological parameters such as UVR and temperature.
Czasopismo
Rocznik
Strony
573--598
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Centre for Physical Sciences and Technology, Savanoriu pr. 231, LT-02300 Vilnius, Lithuania
autor
  • Centre for Physical Sciences and Technology, Savanoriu pr. 231, LT-02300 Vilnius, Lithuania
  • Centre for Physical Sciences and Technology, Savanoriu pr. 231, LT-02300 Vilnius, Lithuania
  • Centre for Physical Sciences and Technology, Savanoriu pr. 231, LT-02300 Vilnius, Lithuania
Bibliografia
  • 1. Andriejauskienė J., Ulevicius V., Bizjak M., Špirkauskaitė N., Byčenkienė S., 2008, Black carbon aerosol at the background site in the coastal zone of the Baltic Sea, Lith. J. Phys., 48(2), 183-194, http://dx.doi.org/10.3952/lithjphys.48210.
  • 2. Asmi A., Wiedensohler A., Laj P., Fjaeraa A.-M., Sellegri K., Birmili W., Weingartner E., Baltensperger U., Zdimal V., Zikova N., Putaud J.-P., Marinoni A., Tunved P., Hansson H.-C., Fiebig M., Kivekas N., Lihavainen H., Asmi E., Ulevicius V., Aalto P. P., Swietlicki E., Kristensson A., Mihalopoulos N., Kalivitis N., Kalapov I., Kiss G., de Leeuw G., Henzing B., Harrison R. M., Beddows D., O’Dowd C., Jennings S. G., Flentje H., Weinhold K., Meinhardt F., Ries L., Kulmala M., 2011, Number size distributions and seasonality of submicron particles in Europe 2008-2009, Atmos. Chem. Phys., 11 (11), 5505-5538, http://dx.doi.org/10.5194/acp-11-5505-2011.
  • 3. Beddows D. C. S., Dall’Osto M., Harrison R. M., 2009, Cluster analysis of rural, urban and curbside atmospheric particle size data, Environ. Sci. Technol., 43 (13), 4694-4700, http://dx.doi.org/10.1021/es803121t.
  • 4. Birmili W., Wiedensohler A., Plass-Dulmer C., Berresheim H., 2000, Evolution of newly formed aerosol particles in the continental boundary layer: a case study including OH and H2SO4 measurements, Geophys. Res. Lett., 27, 2205-2208, http://dx.doi.org/10.1029/1999GL011334.
  • 5. Boy M., Kulmala M., 2002, Nucleation events on the continental boundary layer: influence of physical and meteorological parameters, Atmos. Chem. Phys., 2, 1-16, http://dx.doi.org/10.5194/acp-2-1-2002.
  • 6. Bukowiecki N., Dommen J., Prevot A. S. H., Richter R., Weingartner E., Baltensperger U., 2002, A mobile pollutant measurement laboratory-measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution, Atmos. Environ., 36, 5569-5579, http://dx.doi.org/10.1016/S1352-2310(02)00694-5.
  • 7. Byčenkiene S., Ulevicius V., Kecorius S., 2011, Characteristics of black carbon aerosol mass concentration over the East Baltic region from two-year measurements, J. Environ. Monitor., 13, 1027-1038, http://dx.doi.org/10.1039/c0em00480d.
  • 8. Clarke A. D., Owens S. R., Zhou J. C., 2006, An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere, J. Geophys. Res., 111, D06202, http://dx.doi.org/10.1029/2005JD006565.
  • 9. Dall’Osto M., Monahan C., Greaney R., Beddows D. C. S., Harrison R. M., Ceburnis D., O’Dowd C. D., 2011, A statistical analysis of North East Atlantic (submicron) aerosol size distributions, Atmos. Chem. Phys., 11 (24), 12567-12578, http://dx.doi.org/10.5194/acp-11-12567-2011.
  • 10. Delfino R. J., Staimer N., Tjoa T., Gillen D. L., Polidori A., Arhami M., Kleinman M. T., Vaziri N. D., Longhurst J., Sioutas C., 2009, Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms, Environ. Health Persp., 117 (8), 1232-1238, http://dx.doi.org/10.1289/journla.ehp.0800194.
  • 11. Dongarrá G., Manno E., Varrica D., Lombardo M., Vultaggio M., 2010, Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates, Atmos. Environ., 44 (39), 5244-5257, http://dx.doi.org/10.1016/j.atmosenv.2010.08.041.
  • 12. Einax J. W., Zwanziger H. W., Geiss S., 1997, Chemometrics in environmental analysis, VCH Verlagsgesellschaft mbH, Weinheim, 384 pp.
  • 13. Englert N., 2004, Fine particles and human health a review of epidemiological studies, Toxicol. Lett., 149 (1-3), 235-242, http://dx.doi.org/10.1016/j.toxlet.2003.12.035.
  • 14. Eskridge R., Ku J. Y., Rao S. T., Porter P. S., Zurbenko I. G., 1997, Separating different time scales of motion in time series of meteorological variables, B. Am. Meteorol. Soc., 78 (7), 1473-1483, http://dx.doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2.
  • 15. Eskridge R., Ku J. Y., Rao S. T., Porter P. S., Zurbenko I. G., 1997, Separating different time scales of motion in time series of meteorological variables, B. Am. Meteorol. Soc., 78 (7), 1473-1483, http://dx.doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2.
  • 16. Fahrmeir L., Hamerle A., Tutz G., 1996, Multivariate statistische Verfahren, 2nd edn., de Gruyter, Berlin, 902 pp., (in Berlin).
  • 17. Farge M., 2000, Wavelet transform and their application to turbulence, Ann. Rev. Fluid. Mech., 24, 395-457, http://dx.doi.org/10.1146/annurev.fl.24.010192.002143.
  • 18. Foufoula-Georgiou E., Kumar P., 1995, Wavelets in geophysics, Elsevier, New York, 373 pp.
  • 19. Gong K. W., Zhao W., Li N., Barajas B., Kleinman M. T., Sioutas C., Horvath S., Lusis A. J., Nel A. E., Araujo J. A., 2007, Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells, Genome Biol., 8 (7), R149, http://dx.doi.org/10.1186/gb-2007-8-7-r149.
  • 20. Hies T., Treffeisen R., Sebald L., Reimer E., 2000, Spectral analysis of air pollutants. Part 1: elemental carbon time series, Atmos. Environ., 34 (21), 3495-3502, http://dx.doi.org/10.1016/S1352-2310(00)00146-1.
  • 21. Hinds W. C., 1999, Aerosol technology: properties, behavior and measurements of airborne particles, 2nd edn., New York, Wiley Interscience, 509 pp.
  • 22. Ho K. F., Lee S. C., Cao J. J., Li Y. S., Chow J. C., Watson J. G., Fung K., 2006, Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong, Atmos. Chem. Phys., 6, 4569-4576, http://dx.doi.org/10.5194/acp-6-4569-2006.
  • 23. Jaenicke R., 1993, Tropospheric aerosols, [in:] Aerosol-clouds-climate interaction, P.V. Hobbs (ed.), Academic Press, San Diego, 1-31.
  • 24. Jayaratne E. R., Verna T. S., 2001, The impact of biomass burning on the environmental aerosol concentration in Gaborone, Botswana, Atmos. Environ., 35 (10), 1821-1828, http://dx.doi.org/10.1016/S1352-2310(00)00561-6.
  • 25. Juozaitis A., Trakumas S., Girgždien Ė R., Girgždys A., Šopauskien Ė D., Ulevicius V., 1996, Investigations of gas-to-particle conversion in the atmosphere, Atmos. Res., 41, 183-201, http://dx.doi.org/10.1016/0169-8095(96)00008-7.
  • 26. Kaplinsky A. E., Khutorova O. G., 2010, The wavelet analysis of aerosol characteristics at the Lake Baikal coast, Polzunovskij vestnik, 1, 160-164 (in Russian).
  • 27. Karaca F., Alagha O., Erturk F., 2005, Statistical characterization of atmospheric PM10 and PM2.5 concentrations at a nonimpacted suburban site of Istanbul, Turkey, Chemosphere, 59, 1183-1190, http://dx.doi.org/10.1016/j. chemosphere.2004.11.062.
  • 28. Knutson T. R., Weickman K. M., 1987, 30-60 day atmospheric oscil- lations: composites of Convection and circulation anomalies, Mon. Weather Rev., 115, 1407-1436, http://dx.doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.
  • 29. Kulmala M., Rannik U., Pirjola L., Dal Maso M., Karimaki J., Asmi A., Jappinen A., Karhu V., Korhonen H., Malvikko S. P., Puustinen A., Raittila J., Romakkaniemi S., Suni T., Yli-Koivisto S., 2000, Characterization of atmospheric trace gas and aerosol concentrations at forest sites in southern and northern Finland using back trajectories, Boreal Environ. Res., 5 (4), 315-336.
  • 30. Kulmala M., Vehkamaki H., Petaja T., Dal Maso M., Lauri A., Kerminen V. M., Birmili W., McMurry P. H., 2004, Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Air Waste Manage., 35 (2), 143-176.
  • 31. Laakso L., Hussein T., Aarnio P., Komppula M., Hiltunen V., Viisanen Y., Kulmala M., 2003, Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland, Atmos. Environ., 37 (19), 2629-2641, http://dx.doi.org/10.1016/S1352-2310(03)00206-1.
  • 32. Lohmann U., Feichter J., 2005, Global indirect aerosol affects. A review, Atmos. Chem. Phys., 5 (3), 715-737, http://dx.doi.org/10.5194/acp-5-715-2005.
  • 33. Marr L. C., Harley R. A., 2002, Spectral analysis of weekday-weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California, Atmos. Environ., 36 (14), 2327-2335, http://dx.doi.org/10.1016/ S1352-2310(02)00188-7.
  • 34. Moloi K., Chimidza S., Selin Lindgren E., Viksna A., Standzenieks P., 2002, Black carbon mass and elemental measurements of airborne particles in the village of Serowe, Botswana, Atmos. Environ., 36 (14), 2447-2457, http://dx.doi.org/10.1016/S1352-2310(02)00085-7.
  • 35. Mordas G., Kulmala M., Petäjä T., Aalto P. P., Matulevicius V., Grigoraitis, V., Ulevicius V., Grauslys V., Ukkonen A., Hämeri K., 2005, Design and performance characteristics of a condensation particle counter UF-02proto, Boreal Environ. Res., 10 (6), 543-552.
  • 36. Percival D. P., Walden A. T., 1998, Spectral analysis for physical applications, Cambridge Univ. Press, Cambridge, 612 pp.
  • 37. Plaučkaitė K., Ulevicius V., Špirkauskaitė N., Byčenkiene S., Zieliński T., Petelski T., Ponczkowska A., 2010, Observations of new particle formation events in the south-eastern Baltic Sea, Oceanologia, 52 (1), 53-75, http://dx.doi.org/10.5697/oc.52-1.053.
  • 38. Putaud J.-P., Raes F., Van Dingenen R., Baltensperger J. P. U., Brüggemann E., Facchini M. C., Decesari S., Fuzzi S., Gehrig R., Hansson H. C., Hüglin C., Laj P., Lorbeer G., Maenhaut W., Mihalopoulos N., Müller K., Querol X., Rodriguez S., Schneider J., Spindler G., ten Brink H., Torseth K., Wehner B., Wiedensohler A., 2004, European aerosol phenomenology - 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38 (16), 2579-2595, http://dx.doi.org/10.1016/j.atmosenv.2004.01.041.
  • 39. Rodriguez S., Van Dingenen R., Putaud J. P., Martins-Dos Santos S., Roselli D., 2005, Nucleation and growth of new particles in the rural atmosphere of Northern Italy - relationship to air quality monitoring, Atmos. Environ., 39 (36), 6734-6746, http://dx.doi.org/10.1016/j.atmosenv.2005.07.036.
  • 40. Saliba N. A., El Jam F., El Tayar G., Obeid W., Roumie M., 2010, Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city, Atmos. Res., 97 (1-2), 106-114, http://dx.doi.org/10.1016/j.atmosres.2010.03.011.
  • 41. Sardar S. B., Fine P. M., Yoon H., Sioutas C., 2004, Associations between particle number and gaseous co-pollutant concentrations in the Los Angeles basin, J. Air Waste Manage., 54 (8), 992-1005, http://dx.doi.org/10.1080/10473289.2004.10470970.
  • 42. Torrence C., Compo G. P., 1998, A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79 (1), 61-78, http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
  • 43. Ulevicius V., Byčenkienė S., Remeikis V., Garbaras A., Kecorius S., Andriejauskiene J., Jasinevičienė D., Mocnik G., 2010, Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmos. Res., 98(2-4), 190-200, http://dx.doi.org/10.1016/j.atmosres.2010.03.021.
  • 44. Ulevicius V., Byčenkienė S., Špirkauskaitė N., Kecorius S., 2010, Biomass burning impact on black carbon aerosol mass concentration at a coastal site: case studies, Lith. J. Phys., 50 (3), 335-344, http://dx.doi.org/10.3952/lithjphys.50304.
  • 45. Ulevicius V., Zeromskiene K., Mordas G., 2001, On the production of new particles in the Lithuanian coastal boundary layer, J. Aerosol Sci., 32 (1), 605-606.
  • 46. Verma V., Ning Z., Cho A. K., Schauer J. J., Shafer M. M., Sioutas C., 2009, Redox activity of urban quasi-ultrafine particles from primary and secondary sources, Atmos. Environ., 43, 6360-6368, http://dx.doi.org/10.1016/j.atmosenv.2009.09.019.
  • 47. Vukovich F. M., 1997, Time scales of surface ozone variations in the regional, non- urban environment, Atmos. Environ., 31 (10), 1513-1530, http://dx.doi.org/10.1016/S1352-2310(96)00279-8.
  • 48. Wilson J. G., Zawar-Reza P., 2006, Intraurban-scale dispersion modeling of particulate matter concentrations: applications for exposure estimates in cohort studies, Atmos. Environ., 40 (6), 1053-1063, http://dx.doi.org/10.1016/j.atmosenv.2005.11.026.
  • 49. Xia T., Kovochich M. J., Brant J., Hotze M., Sempf J., Oberley T., Yeh J., Sioutas C., Wiesner M. R., Nel A. E., 2006, Comparisons of the abilities of ambient and commercial nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6 (8), 1794-1807, http://dx.doi.org/10.1021/nl061025k.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb66372b-cadd-4ca4-a395-9cab52d44cf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.