PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experiment and Numerical Modelling the Time of Plate-Shape Casting Solidification vs. Thermal Conductivity of Mould Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Eksperyment i modelowanie numeryczne czasu krzepniecia odlewu płyty w funkcji przewodnictwa cieplnego materiału formy
Języki publikacji
EN
Abstrakty
EN
The paper presents results of measuring thermal conductivity of sand mould material and time of castings solidification evaluated from cooling curves and from Nova Flow & Solid numerical calculations. During the experiments pure Al (99,95%) plate was cast into the sand moulds. The analysed variable parameter in numerical calculations was mould thermal conductivity of fixed value taken from the range 0.5-0.9 W/(mK). Other mould parameters (initial temperature, mass density, heat capacity) and thermo-physical properties of liquid and solid casting were taken invariable. Basing on the measurements it was stated that thermal conductivity of the moulding sand has complex temperature variability, especially during the water vaporization and the obtained dependence should be used in the numerical calculations to improve their accuracy.
PL
Artykuł prezentuje wyniki pomiarów współczynnika przewodzenia ciepła materiału formy piaskowej oraz czas krzepnięcia odlewu oszacowany z krzywej stygnięcia i obliczony numerycznie za pomocą Nova Flow & Solid. W czasie eksperymentów odlew w kształcie płyty wykonywano z czystego aluminium (99,95%). Zmienna w obliczeniach była przewodność cieplna materiału formy z zakresu 0,5-0,9 W/(mK). Pozostałe parametry formy (temperatura początkowa, gęstość masy i pojemność cieplna) oraz właściwości termofizyczne ciekłego i zakrzepłego metalu były stałe. Na podstawie eksperymentów stwierdzono, że temperaturowa zależność przewodności cieplnej formy nie ma prostego przebiegu, szczególnie w okresie odparowywania wilgoci, a uzyskana w części eksperymentalnej temperaturowa zależność powinna być stosowana w obliczeniach numerycznych w celu polepszenia jakości obliczeń.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
Bibliografia
  • [1] M. Copur, M. N. Eruslu, Metalurgija 53, 2, 149-154 (2014).
  • [2] W. K. Krajewski, A. L. Greer, Materials Science Forum, 508 (2006) 281-286.
  • [3] W. K. Krajewski, Materials Science Forum, 508 (2006), 615-620.
  • [4] S. Neves, W. Schäfer, P. N. Hansen, International Journal of Thermophysics, September 2002, Volume 23, Issue 5, pp 1391-1399.
  • [5] Y. Jannot, A. Degiovanni, G. Payet, International Journal of Heat and Mass Transfer 52 (2009) 1105-1111.
  • [6] Y. He, Thermochimica Acta 436 (2005) 122-129.
  • [7] C. P. Cam, Thermochimica Acta 417 (2004) 1-4.
  • [8] S. Chudzik, Infrared Physics & Technology 55 (2012) 73-83.
  • [9] J. Svidro, A. Dioszegi, J. Toth, Journal of Thermal Analysis and Calorimetry 115 (2014) 331-338.
  • [10] D. Emadi, L. V. Whiting, M. Djurdjevic, W. T. Kierkus, J. Sokolowski, Metallurgija - Journal of Metallurgy (Serbia) 10 (2004) 91-106.
  • [11] M. Velièka, R. Pyszko, M. Pøíhoda, J. Molínek, Metalurgija 48 (2009) 4, 277-280
  • [12] G. Solenicki, I. Budij, D. Ciglar, Metalurgija 49 (2010) 1, 3-7.
  • [13] P. Tervola, International Journal of Heat and Mass Transfer, 32, 8, August 1989, Pages 1425-1430.
  • [14] Sang II Park, J. G. Hartley, KSME Journal, December 1996, 10, 4, pp 480-488.
  • [15] K. Kubo, I. Ohnaka, T. Fukusako and K. Mizuuchi, The journal of The Japan Foundrymen’s Society, Vol. 55, (1983), pp. 362-368.
  • [16] K. Kubo, K. Mizuuchi, I. Ohnaka and T. Fukusako, Proc. 50th Intl. Foundry Congress, Cairo, Vol. 6, (1983), pp. 1-12.
  • [17] K. Kubo, K. Mizuuchi, International Foundry, 50 (1983) 5, 1-21.
  • [18] K. Kubo, I. Ohnaka, T. Fukusako, K. Mizuuchi, The journal of the Japan Foundrymen’s Society 53, (1981), 627-634.
  • [19] S. I. Bakhtiyarov, R. A. Overfelt, D. Wang, International Journal of Thermophysics, 26, 1, 141-149 January 2005.
  • [20] A. I. Vejnik, Theory and calculations of solidification of castings in ceramic mould, Maszgiz, Moscow 1954 (in Russian).
  • [21] W. K. Krajewski, J. S. Suchy, Materials Science Forum 649 (2010) 487-491.
  • [22] P. K. Krajewski, Z. Zovko-Brodarac, W. K. Krajewski, Archives of Metallurgy and Materials 58 ,847-849 (Part 1) (2013).
  • [23] P. K. Krajewski, A. Gradowski, W. K. Krajewski, Archives of Metallurgy and Materials 58,1149-1153 (Part 2) (2013).
  • [24] P. K. Krajewski, G. Piwowarski, W. K. Krajewski, Materials Science Forum, 790-791, (2014) 452-457.
  • [25] P. K. Krajewski, J. S. Suchy, G. Piwowarski, W. K. Krajewski, Thermo-physical properties vs. temperature of selected foundry sands, Proceedings of the 71st World Foundry Congress “Advanced Sustainable Foundry”, 21-24 May 2014, Bilbao, Spain (on USB Memory Flash).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb652de8-60e9-4fa1-9bb5-ee09b4079a24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.