PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Autonomy of urban light rail transport systems and its influence on users, expenditures, and operational costs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to study and highlight various effects of automizing urban light rail transport systems by examining the impact of such structures on common users, as well as the expenditures and operational costs involved. By providing an overview of different transportation networks through the three categories of expenditure— transportation, maintenance, and administration—an idea of the general operational cost can be established. Additionally, by indicating the aforementioned cost, the effect of the grade of automation on costs can be determined and explained. However, this paper does not include an attempt to estimate these costs; it only states what may affect such costs. Furthermore, the factor of safety is considered by underlining the changes expected to occur with the implementation of such networks. The implementation of autonomous rail systems would result in lower operational costs, which is discussed in this paper based on another study. At the same time, the factor of safety was also observed as simultaneously increasing, as were the overall experiences of users, both in terms of aesthetics and function. The only setback found by the research is that some users would be reluctant to use a network without an operator.
Czasopismo
Rocznik
Strony
165--175
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Warsaw University of Technology, Faculty of Transport; Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, Doctoral School; Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Independent Researcher; 00-662 Warsaw, Poland
Bibliografia
  • 1. Bösch, P.M. & Becker, F. & Becker, H. & Axhausen, K.W. Cost-based analysis of autonomous mobility services. Transport Policy. 2018. Vol. 64. P. 76-91.
  • 2. Braendle, T. Wie viel kostet ein Mitarbeiter wirklich. 2013. [In German: How much does an employee really cost]. Available at: https://www.runmyaccounts.ch/2013/07/wie-viel-kostet-einmitarbeiterwirklich/.
  • 3. Cartenì, A. & Henke, I. & Di Bartolomeo, M. & Regna, M. A cost-benefit analysis of a fullyautomate driverless metro line in a high-density metropolitan area in Italy. In: 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). Genoa, Italy, 2019. P. 1-6.
  • 4. Flyvbjerg, B. & Bruzelius, N. & van Wee, B. Comparison of capital costs per route-kilometre in urban rail. European Journal of Transport and Infrastructure Research. Vol. 8. No. 1. P. 17-30.
  • 5. En-academic. Milan Metro Line 1. Available at: https://en-academic.com/dic.nsf/enwiki/11743276.
  • 6. Fraszczyk, A. & Brown, P. & Duan, S. Public perception of driverless trains. Urban Rail Transit. 2015. Vol. 1. P. 78-86.
  • 7. Fraszczyk, A. & Mulley, C. public perception of and attitude to driverless train: a case study of Sydney, Australia. Urban Rail Transit. 2017. Vol. 3. P. 100-111.
  • 8. Glira, P. & Ölsböck, K. & Kadiofsky, T. & Schörghuber, M. & Weichselbaum, J. & Zinner, C. & Fel L. Photogrammetric 3D mobile mapping of rail tracks. ISPRS Journal of Photogrammetry and Remote Sensing. 2022. Vol. 183. P. 352-362.
  • 9. Holvad, T. Efficiency analyses for the railway sector: An overview of key issues. Research in Transportation Economics. 2020. Vol. 82. No. 100877.
  • 10. Išoraite, M. Analysis of transport performance indicators. Transport. 2005. Vol. 20. No. 3. P. 111-116.
  • 11. King, C. & Vecia, G. & Thompson, I. Innovative technologies for light rail and tram: a European reference resource. Briefing Paper 9 Kinetic Power - Flywheel System. September 2015. Available at: https://www.polisnetwork.eu/wp-content/uploads/2019/06/flywheel-system-2-finalpolis.pdf.
  • 12. King, K. & Tobin, L. Protecting rail networks: Securing mainline automatic train operation against threats. Global Railway Review. Available at: https://www.globalrailwayreview.com/article/97193/protecting-rail-networks-securing-mainlineautomatic-train-operation-against-threats/
  • 13. Lehner, A. & Strang, T. & García, C.R. A reliable surveillance strategy for an autonomous rail collision avoidance system. In: 15th World Congress on ITS. New York, USA. 2008.
  • 14. Lohnanalyse. 2017. Lohnanalyse für Lokführer/in in der Schweiz. [In German: Salary analysis for engine drivers in Switzerland]. Available at: http://www.lohnanalyse.ch/ch/loehne/details/lokfuehrerin/sql-administrator-it-operationskonzernit-385943.html.
  • 15. Lunawat, D. How Do Driverless Trains Work? 2020. Available at: https://www.scienceabc.com/innovation/driverless-trains-work.html.
  • 16. Müller, M. & Müller, T. & Talkhestani, B.A. & Marks, P. & Jazdi, N. & Weyrich, N. Industrial autonomous systems: a survey on definitions, characteristics and abilities. Automatisierungstechnik. 2021. Vol. 69. No. 1. P. 3-13.
  • 17. Pilipenko, A.V. & Vetrov, A.S. & Pilipenko, A.Y. & Goncharova N.V. Development of a tracked platform control system. IOP Conf. Series: Materials Science and Engineering. 2019. Vol. 516. No. 012002.
  • 18. Ossent, T. Paris experience in driverless metro: increasing capacity, reducing costs. Proceedings of the World MetroRail Congress 2010. London, 2010.
  • 19. Powell, J.P. & Fraszczyk, A. & Cheong, C.N. & Yeung, H.K. Potential benefits and obstacles of implementing driverless train operation on the Tyne and Wear Metro: a simulation exercise. Urban Rail Transit. 2016. Vol. 2. P. 114-127.
  • 20. Rail accident investigation branch. (June 2012). Rail Accident Report: Incident at Llanbadarn Automatic Barrier Crossing (Locally Monitored), near Aberystwyth, 19 June 2011. Llanbadarn: Railways Archive.
  • 21. Rangra, S. & Sallak, M. & Schön, W. & Belmonte, F. Risk and safety analysis of main line autonomous train operation: context, challenges and solutions. In: Congrès Lambda Mu 21 de Maîtrise des Risques et de Sûreté de Fonctionnement. Reims, France, 2018. P. 1-10.
  • 22. SBB AG. Zahlen und Fakten 2015. [In German: Facts and Figures 2015]. Available at: http://www.sbb.ch/zahlen-und-fakten.
  • 23. Smith, D. & Smith, T. & Chiarello, M. & Ho, A. Dubai Metro footbridge design. Proceedings of the Institution of Civil Engineers – Bridge Engineering. 2011. Vol. 164. No. 1. P. 23-39.
  • 24. Systra, Automated and Autonomous Public Transport - possibilities, challenges and technologies. Available at: https://www.systra.com/wp-content/uploads/2020/09/systraautomated_and_autonomous_public_transport_2018-1.pdf.
  • 25. Taheri Andani, M. The application of Doppler LIDAR technology for rail inspection and track geometry. Virginia Tech: Blacksburg, Virginia, USA. 2016. PhD thesis. Available at:https://vtechworks.lib.vt.edu/bitstream/handle/10919/70976/Taheriandani_M_D_2016.pdf?sequence=1&isAllowed=y.
  • 26. The business research company. Autonomous Trains Global Market Report 2021: COVID-19 Growth and Change to 2030 – Product Image Autonomous Trains Global Market Report 2021: COVID-19 Growth and Change to 2030. Dublin, Ireland, 2021. Available at: https://www.researchandmarkets.com/reports/5321501.
  • 27. Thompson, L. & Bente, H. A balanced scorecard for railway system efficiency? OECD/ITF Railway Efficiency Roundtable. Paris, France, 2014. Available at: https://www.itfoecd.org/sites/default/files/docs/thompson-bente-presentation.pdf.
  • 28. UIC & FFE International Union of Railways (UIC), Spanish Railways Foundation (FFE). Paris, December 2016. Technologies And Potential Developments for Energy Efficiency and CO2 Reductions In Rail Systems. Available at: https://uic.org/IMG/pdf/_27_technologies_and_potential_developments_for_energy_efficiency_an d_co2_reductions_in_rail_systems._uic_in_colaboration.pdf.
  • 29. UIC. IRRB. A Global Vision for Railway Development. 2015. Available at: https://uic.org/IMG/pdf/global_vision_for_railway_development.pdf.
  • 30. US Congress. 1976. Automatic Train Control in Rail Rapid Transit. Office of Technology. Available at: https://www.princeton.edu/~ota/disk3/1976/7614/7614.pdf.
  • 31. Vasile, I. & Tudor, E. & Sburlan, I.-C. & Gheți, M.-A. & Popa, G. Experimental validation of LiDAR sensors used in vehicular applications by using a mobile platform for distance and speed measurements. Sensors. 2021. Vol. 21. No. 8147.
  • 32. Wang, Y. & Zhang, M. & Ma, J. & et al. Survey on driverless train operation for urban rail transit systems. Urban Rail Transit. 2016. Vol. 2. P. 106-113.
  • 33. Xiaoyang, L. & Eathan, H. & Suescun, E. Safety and Communication System (SCS) For Passengers In Railroad Transportation. New York University: New York, USA, 2011.
  • 34. Yang, Y. & Zheng, Y. & Yuan, Z. & Sun, D. & Chen, J. A new method to calculate the cost of urban rail transit operation. In: International Conference on Chemical, Material and Food Engineering (CMFE-2015). Kunming, Yunnan, China, 2015.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb601f1b-72d0-4c35-b291-cf78e706d618
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.