PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New designs of variable stiffness couplings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flexible couplings are widely used in mechanical drives of transport and other machines. A fundamental function of flexible shaft couplings regarding torsional vibration is the optimum tuning of torsional oscillating mechanical systems. At the authors’ workplace, the focus is on the research and design of pneumatic couplings, where the torque is transmitted mainly by compressed gas (air) in their pneumatic flexible elements. The primary advantage of these couplings is that their mechanical properties can be quickly and effectively adjusted, especially the dynamic torsional stiffness, by air pressure change directly while the mechanical system is running. This allows us “to tune” the properties of the pneumatic coupling according to the current parameters of the machine drive to avoid resonance and minimize torsional vibration. Therefore, we tend to refer to them as “pneumatic tuners of torsional vibration”. This paper aims to present two new types of these “pneumatic tuners” that were recently granted patent protections, namely “Pneumatic flexible shaft coupling with hose flexible element” and “Drum pneumatic flexible shaft coupling”. Because these pneumatic tuners are not in practical use yet, this paper describes only their design and supposed benefits.
Rocznik
Tom
Strony
91--101
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Faculty of Mechanical Engineering, Department of Construction and Transport Engineering, Technical University of Košice, Letná 9 Street, 042 00 Košice, Slovakia
  • Faculty of Mechanical Engineering, Department of Construction and Transport Engineering, Technical University of Košice, Letná 9 Street, 042 00 Košice, Slovakia
Bibliografia
  • 1. Dmitrieva Valeriya Valer'evna, Pavel Yevgen'evich Sizin, Aleksey Andreevich Sobyanin. 2021. „Application of the soft starter for the asynchronous motor of the belt conveyor”. IOP Conference Series: Earth and Environmental Science 942(1): 012003. DOI: 10.1088/1755-1315/942/1/012003.
  • 2. Fang, Lijin, Yan Wang. 2017. „Stiffness Analysis of a Variable Stiffness Joint Using a Leaf Spring”. In: 10th International Conference on Intelligent Robotics and Applications, ICIRA 2017: 225-237. Huazhong Univ Sci & Technol. 16-18 August 2017, Wuhan, China. DOI: 10.1007/978-3-319-65292-4_20.
  • 3. Galdo María Isabel Lamas. 2021. „Marine Engines Performance and Emissions”. Journal of Marine Science and Engineering 9(3): 280. DOI: 10.3390/jmse9030280.
  • 4. Gierz Łukasz, Łukasz Warguła, Mateusz Kukla, Krzysztof Koszela, Tomasz Szymon Zwiachel. 2020. „Computer aided modeling of wood chips transport by means of a belt conveyor with use of discrete element method”. Applied Sciences 10(24): 9091. DOI: 10.3390/app10249091.
  • 5. Homišin Jaroslav. 2016. „Characteristics of pneumatic tuners of torsional oscillation as a result of patent activity”. Acta Mechanica et Automatica 10(4): 316-323. ISSN: 1898-4088. DOI: 10.1515/ama-2016-0050.
  • 6. Hrabovský Leopold, Jiří Fries. 2021. „Transport Performance of a Steeply Situated Belt Conveyor”. Energies 14(23): 7984. DOI: 10.3390/ en14237984.
  • 7. Chaban Andriy, Tomasz Perzyński, Andrzej Popenda, Radosław Figura, Vitaliy Levoniuk. 2022. „Mathematical Modeling of Transient Processes in the Susceptible Motion Transmission in a Ship Propulsion System Containing a Shaft Synchronous Generator”. Energies 15(9): 3266. DOI: 10.3390/en15093266.
  • 8. Kinnunen Kalle, Sampo Laine, Tuomas Tiainen, Raine Viitala. 2022. „Method for Adjusting Torsional Natural Frequencies of Powertrains with Novel Coupling Design”. Machines 10(3): 162. DOI: 10.3390/machines10030162.
  • 9. Kołodziej Paweł, Marek Boryga. 2014. „Frequency analysis of coupling with adjustable torsional flexibility”. Eksploatacja i Niezawodnosc – Maintenance and reliability 16(2): 325-329. ISSN: 1507-2711.
  • 10. Ledezma-Ramirez Diego Francisco, Neil Ferguson, Michael Brennan. 2011. „Shock isolation using an isolator with switchable stiffness”. Journal of Sound and Vibration 330(5): 868-882. DOI: 10.1016/j.jsv.2010.09.016.
  • 11. Lee Kang-Hyun, Jae-Eun Park, Young-Keun Kim. 2019. „Design of a stiffness variable flexible coupling using magnetorheological elastomer for torsional vibration reduction”. Journal of Intelligent Material Systems and Structures 30(15): 2212-2221. DOI: 10.1177/1045389X19862378.
  • 12. Li Xiangong, Yu Li, Yuzhi Zhang, Feng Liu, Yu Fang. 2020. „Fault Diagnosis of Belt Conveyor Based on Support Vector Machine and Grey Wolf Optimization”. Mathematical Problems in Engineering 2020: 1367078. DOI: 10.1155/2020/1367078.
  • 13. Li Zhongyi, Weihai Chen, Jianbin Zhang, Qihang Li, Jianhua Wang, Zaojun Fang, Guilin Yang. 2022. „A novel cable-driven antagonistic joint designed with variable stiffness mechanisms”. Mechanism and Machine Theory 171: 104716. DOI: 10.1016/j.mechmachtheory.2021.104716.
  • 14. Liptai Pavol, Marek Moravec, Ervin Lumnitzer, Marcela Gergeľová. 2017. „Proposal of the sound insulating measures for a vibrational sorter and verification of the measured effectiveness”. Advances in Science and Technology-Research Journal 11(3): 196-203. ISSN: 2299-8624. DOI: 10.12913/22998624/76068.
  • 15. Lubin Thierry, Alexandre Colle. 2020 „Simulation analysis and experimental evaluation of the transient behaviour of a reluctance magnetic coupling”. IET Electric Power Applications 14(3): 391-397. DOI: 10.1049/iet-epa.2019.0678.
  • 16. Maláková, Silvia. 2017. „Analysis of gear wheel body influence on gearing stiffness”. Acta Mechanica Slovaca 21(3): 34-39. ISSN: 1335-2393.
  • 17. Puškár Michal, Melichar Kopas. 2018. „System based on thermal control of the HCCI technology developed for reduction of the vehicle NOX emissions in order to fulfil the future standard Euro 7”. Science of the Total Environment 643: 674-680. ISSN: 0048-9697. DOI: 10.1016/j.scitotenv.2018.06.082.
  • 18. Syam Thaer, Ahmed Hegazi, Asan Muthalif, Yousif Badri. 2021. „Magnetorheological elastomer-based variable stiffness flexible coupling for vibration isolation”. Transactions of the Canadian Society for Mechanical Engineering 46(1): 1-10. DOI: 10.1139/tcsme-2021-0007.
  • 19. SK 288800 B6. Pneumatická pružná hriadeľová spojka s hadicovým pružným elementom. Technická univerzita v Košiciach, Košice, SK. 02.06.2021. [In Slovak: SK flexible shaft coupling with serial arranged flexible elements. Technical University of Košice, Košice, SK. 09.06.2021.]
  • 20. SK 288875 B6. Pneumatická pružná hriadeľová tangenciálna spojka s osovo deformovanými elementmi. Technická univerzita v Košiciach, Košice, SK. 14.07.2021. [In Slovak: SK 288875 B6. Tangential pneumatic flexible shaft coupling with axially deformed flexible elements. Technical University of Košice, Košice, SK. 17.07.2021.]
  • 21. SK 288878 B6. Pneumatická pružná hriadeľová bubnová spojka. Technická univerzita v Košiciach, Košice, SK. 09.06.2021. [In Slovak: SK 288878 B6. Drum pneumatic flexible shaft coupling. Technical University of Košice, Košice, SK. 09.06.2021.]
  • 22. SK 288879 B6, Pneumatická pružná reťazcová hriadeľová spojka. Technická univerzita v Košiciach, Košice, SK. 09.06.2021. [In Slovak: SK 288879 B6. Tangential pneumatic flexible shaft coupling with serial arranged flexible elements. Technical University of Košice, Košice, SK. 09.06.2021.]
  • 23. Sturm Martin, Lubomír Pešík. 2017. „Determination of a Vibrating Bowl Feeder Dynamic Model and Mechanical Parameters”. Acta Mechanica et Automatica 11(3): 243-246. ISSN: 1898-4088. DOI: 10.1515/ama-2017-0038.
  • 24. Sudano, Angelo, Dino Accoto, Loredana Zollo, Eugenio Guglielmelli. 2013. „Design, development and scaling analysis of a variable stiffness magnetic torsion spring”. International Journal of Advanced Robotic Systems 10(10): 372. DOI: 10.5772/57300.
  • 25. Szántó Attila, János Kiss, Tamás Mankovits, Gusztáv Áron Szíki. 2021. „ Dynamic Test Measurements and Simulation on a Series Wound DC Motor”. Applied Sciences 11(10): 4542. DOI: 10.3390/app11104542.
  • 26. Vanderborght Bram et al. 2013 „Variable impedance actuators: A review”. Robotics and Autonomous Systems 61(12): 1601-1614. DOI: 10.1016/j.robot.2013.06.009.
  • 27. Vinogradov B. V., Khristenko A. V., 2016. „Flexible couplings with rubber-cord shells in dual pinion mill drives”. Naukovyi visnyk Natsionalnoho Hirnychoho Universytetu 2016(1): 42-46. ISSN: 2071-2227.
  • 28. Xu Shichang, Gang Cheng, Yusong Pang, Zujin Jin, Bin Kang. 2021. „Identifying and Characterizing Conveyor Belt Longitudinal Rip by 3D Point Cloud Processing”. Sensors 21(19): 6650. DOI: 10.3390/s21196650.
  • 29. Zhu Hongxi, Ulrike Thomas. 2019. „A new design of a variable stiffness joint”. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics: 223-228. IEEE, IES, ASME, Hong Kong, China. DOI: 10.1109/AIM.2019.8868648. 288800 B6. Pneumatic Flexible Shaft Coupling with Hose Flexible Element. Technical University of Košice, Košice, SK. 02.06.2021.]
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb574293-e3cb-4889-805d-06998e748a6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.