PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Support Vector Regression model to predict TEC for GNSS signals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ionospheric Total Electron Content (TEC) predominantly affects the radio wave communication and navigation links of Global Navigation Satellite Systems (GNSS). The ionospheric TEC exhibits a complex spatial–temporal pattern over equatorial and low latitude regions, which are difficult to predict for providing early warning alerts to GNSS users. Machine Learning (ML) techniques are proven better for ionospheric space weather predictions due to their ability of processing and learning from the available datasets of solar-geophysical data. Hence, a supervised ML algorithm such as the Support Vector Regression (SVR) model is proposed to predict TEC over northern equatorial and low latitudinal GNSS stations. The vertical TEC data estimated from GPS measurements for the entire 24th solar cycle period, 11 years (2009–2019), is considered over Bengaluru and Hyderabad International GNSS Service (IGS) stations. The performance of the proposed SVR model with kernel Gaussian or Radial Basis Function (RBF) is evaluated over the two selected testing periods during the High Solar Activity (HSA) year, 2014 and the Low Solar Activity (LSA) year, 2019. The proposed model performance is compared with Neural Networks (NN) model, and International Reference Ionosphere (IRI-2016) model during both LSA and HSA periods. It is noticed that the proposed SVR model has well predicted the VTEC values better than NN and IRI-2016 models. The experimental results of the SVR model evidenced that it could be an effective tool for predicting TEC over low-latitude and equatorial regions.
Czasopismo
Rocznik
Strony
2827--2836
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
  • School of Engineering, Malla Reddy University, Maisammaguda, Dulapally, Hyderabad, Telangana 500100, India
  • Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
  • Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
Bibliografia
  • 1. Akhoondzadeh M (2013) Support vector machines for TEC seismo-ionospheric anomalies detection. Annales Geophysicae. Copernicus GmbH pp. 173–86
  • 2. Ban P-P, Sun S-J, Chen C, Zhao Z-W (2011) Forecasting of low-latitude storm-time ionospheric foF2 using support vector machine. Radio Sci 46:1–9
  • 3. Bilitza D, Altadill D, Truhlik V et al (2017) International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15:418–429
  • 4. Cesaroni C, Spogli L, Aragon-Angel A. et al. (2020) Neural network based model for global total electron content forecasting. J Space Weather Space Clim
  • 5. Chen C, Wu Z-S, Ban P-P, Sun S-J, Xu Z-W, Zhao Z-W (2010) Diurnal specification of the ionospheric f 0 F 2 parameter using a support vector machine. Radio Sci 45:1–13
  • 6. European GNSS (Galileo) Open Service (2016) Ionospheric correction algorithm for Galileo single frequency users. https://www.gsc-europa.eu/system/files/galileo_documents/Galileo_Ionospheric_Model.pdf
  • 7. Harsha PBS, Ratnam DV, Nagasri ML, Sridhar M, Raju KP (2020) Kriging-based ionospheric TEC, ROTI and amplitude scintillation index (S 4) maps for India. IET Radar Sonar Navig 14:1827–1836
  • 8. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2012) Global positioning system: theory and practice. Springer Science & Business Media
  • 9. Hu J, Wang J, Zeng G (2013) A hybrid forecasting approach applied to wind speed time series. Renew Energy 60:185–194
  • 10. Kim M, Kim J (2019) Extending the coverage area of regional ionosphere maps using a support vector machine algorithm. Ann Geophys 37(1):77–87
  • 11. Mallika L, Ratnam DV, Raman S, Sivavaraprasad G (2020) Performance analysis of neural networks with IRI-2016 and IRI-2012 models over Indian low-latitude GPS stations. Astrophys Space Sci 365:1–14
  • 12. Meyer D, Wien FT (2015) Support vector machines. The Interface to libsvm in package e1071 28
  • 13. Mukesh R, Soma P, Karthikeyan V, Sindhu P (2019) Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model. Astrophys Space Sci 364:15
  • 14. Okoh D (2018) GPS modeling of the ionosphere using computer neural networks. Multifunctional Operation and Application of GPS. IntechOpen
  • 15. Parkinson BW, Enge P, Axelrad P, Spilker JJ Jr (1996) Global positioning system: Theory and applications, vol II. American Institute of Aeronautics and Astronautics
  • 16. Razin MRG, Voosoghi B (2016) Modeling of ionosphere time series using wavelet neural networks (case study: N.W. of Iran). Adv Space Resh 58:74–83
  • 17. Razin MRG, Voosoghi B, Mohammadzadeh A (2016) Efficiency of artificial neural networks in map of total electron content over Iran. Acta Geod Geoph 51:541–555
  • 18. Seemala GK, Valladares CE (2011) Statistics of total electron content depletions observed over the South American Continent for the year 2008. Radio Sci 46, RS5019
  • 19. Stoean R, Dumitrescu D, Preuss M, Stoean C (2006) Evolutionary support vector regression machines. In: 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, pp. 330–5
  • 20. Vladimir N.Vapnik (1995) The nature of statistical learning theory
  • 21. Watthanasangmechai K, Supnithi P, Lerkvaranyu S, Tsugawa T, Nagatsuma T, Maruyama T (2012) TEC prediction with neural network for equatorial latitude station in Thailand. Earth, Planet Space 64:473–483
  • 22. Zhukov A, Sidorov D, Mylnikova A, Yasyukevich Y (2018) Machine learning methodology for ionosphere total electron content nowcasting. Int J Artif Intell 16:144–157
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb56c69f-f68e-40e0-8318-cf7c0eead50a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.