Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Copper tungsten liner manufactured using uniaxial pressing technique has been characterized numerically and experimentally in comparison with a baseline shaped charge copper liner produced by deep drawing technique. The jet properties resulted from these two shaped charges were different according to their liner types and relevant densities which affect the resultant penetration depths into rolled homogeneous armour (RHA) targets. Different copper-tungsten powder liners have been studied and analysed using Autodyn hydrocode, from which an optimum powder design was chosen based on its maximum jet kinetic energy that can be coherent. The compacted liner elastic properties have been measured using SONELASTIC apparatus, whereas its real density is determined using helium gas pycnometer. Baseline copper liner obtained by deep drawing technique of uniform density exhibited lower penetration depth in comparison with the copper-tungsten liner (higher density powder). Besides, the penetration crater resulted from the powder liner showed clean hole without clogging because there was no massive slug as in the case of the copper liners. Experimental field tests of the two liners against (RHA) targets exhibited different penetrations depths, which have been accounted in this research.
Słowa kluczowe
Rocznik
Tom
Strony
610--628
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Technical Research Center, Cairo, Egypt
autor
- Mechanical Engineering Department, Modern Academy for Engineering and Technology, Cairo, Egypt
autor
- Military Technical College, Kobry Elkobbah, 11765, Cairo, Egypt
Bibliografia
- [1] Zygmunt, B.; Wilk, Z. Formation of Jets by Shaped Charges with Metal Powder Liners. Propellants, Explos. Pyrotech. 2008, 33(6): 482-487.
- [2] Bourne, B.; Cowan, K. G.; Curtis, J. P. Shaped Charge Warheads Containing Low Melt Energy Metal Liners. Int. Symp. Ballist. Proc. 19th, Interlaken, Switzerland, 2001.
- [3] Elshenawy, T.; Li, Q. M. Breakup Time of Zirconium Shaped Charge Jet. Propellants, Explos. Pyrotech. 2013, 38(5): 703–708.
- [4] Elshenawy, T. Determination of the Velocity Difference between Jet Fragments for a Range of Copper Liners with Different Small Grain Sizes. Propellants, Explos. Pyrotech. 2016, 41(1): 69-75.
- [5] Baker, E. L.; DeFisher, S.; Daniels, A.; Vuong, T.; Pham, J. Glass as a Shaped Charge Liner Material Glass as a Shaped Charge Liner Material. Int. Symp. Ballist. Proc. 26th, Lancaster, PA. 2011.
- [6] Reese, J. W.; Hetz, A. Coated Metal Particles to Enhance Oil Field Shaped Charge Performance. Patent US 7011027, 2006.
- [7] Stinson, J. S.; Nelson, S. R.; Wittman, C. L. Method for Producing High Density Refractory Metal Warhead Liners from Single Phase Materials. Patent US 5523048, 1996.
- [8] Walters, W.; Peregino, P.; Summers, R.; Leidel, D. A Study of Jets from Unsinteredpowder Metal Lined Nonprecision Small-caliber Shaped Charges. Report no. ARL-TR-2391. Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate, USA, 2001.
- [9] Leidel, D. J.; Lawson, J. P. High Performance Powdered Metal Mixtures for Shaped Charge Liners. Patent US 7547345, 2009.
- [10] Hirsch, E.; Mayseless M. Penetration of Porous Jets. J. Appl. Mech. 2010, 77(5): 51803.
- [11] Zhang, X.; Wu, C.; Huang F. Penetration of Shaped Charge Jets with Tungstencopper and Copper Liners at the Same Explosive-to-liner Mass Ratio into Water. Shock Waves 2010, 20(3): 263-267.
- [12] Glenn, L. A. Pressure Enhanced Ppenetration with Shaped Charge Perforators. Patent US 6223656, 2001.
- [13] Held, M. Behind Armour Effects at Shaped Charge Attacks. Int. Symp. Ballist. Proc. 24th, New Orleans, LA, USA, 2008.
- [14] Schwartz, A. J.; Kumar, M.; Lassila, D. H. Analysis of Intergranular Impurity Concentration and the Effects on the Ductility of Copper-shaped Charge Jets. Metall. Mater. Trans. A 2004, 35(9): 2567-2573.
- [15] Held, M. Liners for Shaped Charges. J. Battlefield Tech. 2001, 4:1-7.
- [16] Elbeih, A.; Wafy, T. Z.; Elshenawy, T. Performance and Detonation Characteristics of Polyurethane Matrix Bonded Attractive Nitramines, Cent. Eur. J. Energ. Mater. 2017, 14(1): 77-89.
- [17] Sućeska, M. Test Methods for Explosives. Springer, Heidelberg, 1995; ISBN 978-1-4612-0797-9.
- [18] Šelešovský, J.; Pachmáň, J. Probit Analysis − a Promising Tool for Evaluation of Explosive’s Sensitivity. Cent. Eur. J. Energ. Mater. 2010, 7(4): 269-278.
- [19] Zeman, S.; Yan, Q.-L.;Elbeih, A. Recent Advances in the Study of the Initiation of Energetic Materials Using the Characteristics of their Thermal Decomposition. Part II. Using Simple Differential Thermal Analysis. Cent. Eur. J. Energ. Mater. 2014, 11(3): 395-404.
- [20] Pelikan, V.; Zeman, S.; Yan,Q.-L.;Erben, M.; Elbeih, A.; Akštein, Z. Concerning the Shock Sensitivity of Cyclic Nitramines Incorporated into a Polyisobutylene Matrix. Cent. Eur. J. Energ. Mater. 2014, 11(2): 219-235.
- [21] Elbeih, A.; Mohamed, M.; Wafy, T. Sensitivity and Detonation Characteristics of Selected Nitramines Bonded by Sylgard Binder. Propellants Explos. Pyrotech. 2016, 41(6): 1044-1049.
- [22] Sućeska, M. Calculation of Detonation Parameters by EXPLO5 Computer Program. In: Explosion, Shock Wave and Hypervelocity Phenomena in Materials. ISBN 978-087849-950-2. Periodical: Mater. Sci. Forum 2004, 465: 325.
- [23] Pugh, E. M.; Eichelberger, R. J.; Rostoker, N. Theory of Jet Formation by Charges with Lined Conical Cavities. J. Appl. Phys. 1952, 23(5): 532-536.
- [24] Elshenawy, T.; Li, Q. Influences of Target Strength and Confinement on the Penetration Depth of an Oil Well Perforator. Int. J. Impact Eng. 2013, 54: 130-137.
- [25] Tarver, C. M.; Tao, W. C.; Lee, C. G. Sideways Plate Push Test for Detonating Solid Explosives. Propellants Explos. Pyrotech. 1996, 21(5): 238-246.
- [26] Lan, I.; Hung, S.C.; Chen, C.Y.; Niu, Y.M.; Shiuan, J.H. An Improved Simple Method of Deducing JWL Parameters from Cylinder Expansion Test. Propellants Explos. Pyrotech. 1993, 18(1): 18-24.
- [27] Elek, P. M.; Džingalašević, V. V.; Jaramaz, S. S; Micković, D. M. Determination of Detonation Products Equation of State from Cylinder Test: Analytical model and numerical analysis. Thermal Science 2015, 19(1): 35-48.
- [28] Kato, H.; Kaga, N.; Takizuka, M.; Hamashima, H.; Itoh, S. Research on the JWL Parameters of Several Kinds of Explosives. Mater. Sci. Forum 2004, 465-466: 271.
- [29] AUTODYN® Jetting Tutorial. 3rd Revision, Century Dynamics, USA, 1997.
- [30] Valat-Villain, P.; Durinck, J.; Renault, P. O. Grain Size Dependence of Elastic Moduli in Nanocrystalline Tungsten. Journal of Nanomaterials 2017, DOI: 10.1155/2017/3620910.
- [31] Cowan, G. R.; Holtzman, A. H. Flow Configurations in Colliding Plates: Explosive Bonding. Journal of Applied Physics 1963, 34(4): 928-939.
- [32] Chou, P. C.; Carleone, J.; Karpp, R. R. Criteria for Jet Formation from Impinging Shells and Plates. J. Appl. Phys. 1976, 47(7): 2975-2981.
- [33] Harrison, J. T. Improved Analytical Shaped Charge Code: basc. Report no. ARBRLTR-02300. US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, USA, 1981.
- [34] Walker, J. D. Incoherence of Shaped Charge Jets. AIP Conference Proceedings 1994, 309(1): 1869-1872.
- [35] Walters, P.; Zukas, J. Fundamentals of Shaped Charge. Wiley Interscience Publication, New York, USA 1989; ISBN 9780471621720.
- [36] Shekhar, H. Theoretical Modelling of Shaped Charges in the Last Two Decades (1990-2010): A Review. Cent. Eur. J. Energ. Mater. 2012, 9(2): 155-185.
- [37] Maritz, M. F.; Werneyer, K. D.; Mostert, F. J. An Analytical Penetration Model for Jets with Varying Mass Density Profiles. Int. Symp. Ballist. Proc. 22nd,Vancouver, Canada, 2005.
- [38] Grove, B.; Walton, I. Shaped Charge Jet Velocity and Density Profiles. Int. Symp. Ballist. Proc. 23rd, Tarragona, Spain, 2007.
- [39] Elshenawy, T.; Elbeih, A.; Li, Q. M. A Modified Penetration Model for Copper-Tungsten Shaped Charge Jets with Non-uniform Density Distribution. Cent. Eur. J. Energ. Mater. 2016, 13(4): 927-943.
- [40] Elshenawy, T.; Elbeih, A.; Li, Q. M. Influence of Target Strength on the Penetration Depth of Shaped Charge Jets into RHA Targets. Int. J. Mech. Sci. 2018, 136: 234-242.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb55fa1d-1551-4af6-acc0-6c7170dfafb5