PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The influence of different types of carbon nanomaterial on the properties of coatings obtained by EPD process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The first part of research is concentrated on the examination of four kinds of carbon nanomaterials: graphene oxide (GO), multi-walled carbon nanotubes (MWCNT), multi-walled carbon nanotubes functionalized by authors in acids mixture (MWCNT-F) and multi-walled carbon nanotubes with hydroxyl groups (MWCNT-OH). Their microstructure was observed in transmission electron microscopy (TEM). Based on these microphotographs, the diameters of carbon nanotubes were measured. Then, in order to determine the chemical composition of GO, MWCNT-F and MWCNT-OH, X-ray photoelectron spectroscopy was applied. The second part of study concerns the properties of the coatings deposited electrophoretically on titanium surface from previously examined nanomaterials. The coatings from individual nanomaterials, as well as hybrid layers (combination of two kinds of nanomaterial: graphene oxide with one of the nanotubes’ type) were deposited. Microstructure of the coatings was evaluated with the use of scanning electron microscopy (SEM). Furthermore, surface properties, important while considering usage of these materials in biological applications: wettability and surface free energy were evaluated. These materials are meant for application in regeneration and stimulation of nerve cells. All the research carried out so far indicate the influence of nanotubes’ functionalization degree on the properties of their suspension, as well as the characteristics of the deposited coating. It also influences the interaction between two types of nanomaterials. Functionalization in strong acids introduces functional groups which change nanotubes’ dimensions, properties and behavior in solution.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Catauro M., Papale F., Bollino F.: Characterization and biological properties of TiO2 /PCL hybrid layers prepared via sol-gel dip coating for surface modification of titanium implants. Journal of Non-Crystalline Solids 415 (2015) 9-15.
  • [2] Imade S., Mori R., Uchio Y., Furuya S.: Effect of implant surface roughness on bone fixation: the differences between bone and metal pegs. J Orthop Sci. 14(5) (2009) 652-657.
  • [3] Wong J.Y., Leach J.B., Brown X.Q.: Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surface Science 570(1) (2004) 119-133.
  • [4] Hanawa T.: Biofunctionalization of titanium for dental implant. Japanese Dental Science Review 46(2) (2010) 93-101.
  • [5] De Lange G., Donath K.: Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 10(2) (1989) 121-125.
  • [6] Pajamäki K., Lindholm T., Andersson Ö., Karlsson K., Vedel E., Yli-Urpo A., et al.: Bioactive glass and glass-ceramic-coated hip endoprosthesis: experimental study in rabbit. Journal of Materials Science: Materials in Medicine 6(1) (1995) 14-18.
  • [7] Fraczek-Szczypta A.: Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater Sci Eng C Mater Biol Appl. 34 (2014) 35-49.
  • [8] Lee W., Parpura V.: Carbon nanotubes as substrates/scaffolds for neural cell growth. Progress in brain research 180 (2009) 110-125.
  • [9] Fabbro A., Prato M., Ballerini L.: Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev. 65(15) (2013) 2034-2044.
  • [10] Boccaccini A., Keim S., Ma R., Li Y., Zhitomirsky I.: Electrophoretic deposition of biomaterials. Journal of The Royal Society Interface. The Royal Society 7(5) (2010) S581-S613.
  • [11] Besra L., Liu M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in materials science 52(1) (2007) 1-61.
  • [12] Du C., Heldbrant D., Pan N.: Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition. Materials Letters 57(2) (2002) 434-438.
  • [13] Benko A., Przekora A., Wesełucha-Birczyńska A., Nocuń M., Ginalska G., Błażewicz M.: Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic deposition: physicochemical and biological characterization. Applied Physics A. 122(4) (2016) 1-13.
  • [14] Fraczek-Szczypta A., Dlugon E., Weselucha-Birczynska A., Nocun M., Blazewicz M.: Multi walled carbon nanotubes deposited on metal substrate using EPD technique. A spectroscopic study. Journal of Molecular Structure 1040 (2013) 238-245.
  • [15] Park J.H., Park J.M.: Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. Surface and Coatings Technology 254 (2014) 167-174.
  • [16] Singh B.P., Nayak S., Nanda K.K., Jena B.K., Bhattacharjee S., Besra L.: The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 61 (2013) 47-56.
  • [17] Wang S.-C., Yang J., Zhou X.-Y., Xie J., Ma L.-L., Huang B.: Electrochemical properties of carbon nanotube/graphene oxide hybrid electrodes fabricated via layer-by-layer self-assembly. Journal of Electroanalytical Chemistry 722 (2014) 141-147.
  • [18] Zhang L., Pu J., Wang L., Xue Q.: Synergistic Effect of Hybrid Carbon Nanotube-Graphene Oxide as Nanoadditive Enhancing the Frictional Properties of Ionic Liquids in High Vacuum. ACS applied materials & interfaces. ACS Publications 7(16) (2015) 8592-8600.
  • [19] Tung V.C., Chen L.-M., Allen M.J., Wassei J.K., Nelson K., Kaner R.B., et al.: Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano letters 9(5) (2009) 1949-1955.
  • [20] Yu D., Dai L.: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. The Journal of Physical Chemistry Letters 1(2) (2009) 467-470.
  • [21] Liu J., Rinzler A.G., Dai H., Hafner J.H., Bradley R.K., Boul P.J., et al.: Fullerene pipes. Science. American Association for the Advancement of Science 280(5367) (1998) 1253-1256.
  • [22] Fraczek-Szczypta A., Menaszek E., Blazewicz S.: Some observations on carbon nanotubes susceptibility to cell phagocytosis. Journal of Nanomaterials 2011 (2011) ID 473516, 1-8.
  • [23] Firme C.P., Bandaru P.R.: Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6(2) (2010) 245-256.
  • [24] Balasubramanian K., Burghard M.: Chemically functionalized carbon nanotubes. Small. 1(2) (2005) 180-192.
  • [25] Hirata E., Uo M., Takita H., Akasaka T., Watari F., Yokoyama A.: Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49(10) (2011) 3284-3291.
  • [26] Standard A., others.: Zeta potential of colloids in water and waste water. Am Soc Testing Mater. (1985) 4187-4182.
  • [27] Castro M., Al-Dahoudi N., Oliveira P., Schmidt H.: Multi-walled carbon nanotube-based transparent conductive layers deposited on polycarbonate substrate. Journal of Nanoparticle Research 11(4) (2009) 801-806.
  • [28] Song S., Peng C.: Viscosities of binary and ternary mixtures of water, alcohol, acetone, and hexane. Journal of Dispersion Science and Technology 29(10) (2008) 1367-1372.
  • [29] Graphenea [Internet]. Available from: http://www.graphenea.com/pages/graphene-oxide#.V2v0MPmLTIV
  • [30] Ohta T., Yamada M., Kuroda H.: X-ray photoelectron spectroscopy of p-benzoquinone, hydroquinone and their halogen-substituted derivatives. Bulletin of the Chemical Society of Japan 47(5) (1974) 1158-1161.
  • [31] Vigolo B., Hérold C., Marêché J.-F., Ghanbaja J., Gulas M., Le Normand F., et al.: A comprehensive scenario for commonly used purification procedures of arc-discharge as-produced single-walled carbon nanotubes. Carbon 48(4) (2010) 949-963.
  • [32] Tran P.A., Zhang L., Webster T.J.: Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev. 61(12) (2009) 1097-1114.
  • [33] Liu X., Lim J.Y., Donahue H.J., Dhurjati R., Mastro A.M., Vogler E.A.: Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: phenotypic and genotypic responses observed in vitro. Biomaterials 28(31) (2007) 4535-4550.
  • [34] Gentleman M.M., Gentleman E.: The role of surface free energy in osteoblast-biomaterial interactions. International Materials Reviews 59(8) (2014) 417-429.
  • [35] Lai H.-C., Zhuang L.-F., Liu X., Wieland M., Zhang Z.-Y., Zhang Z.-Y.: The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A 93(1) (2010) 289-296.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb5423c3-139c-4fa3-986c-7218cae04016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.