PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of the seasonal and interannual variability of phytoplankton and zooplankton assemblages in a significant marine ecosystem

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The eastern Great Australian Bight (GAB) is a significant marine ecosystem, featuring a range of marine mammals and large pelagic fish including blue whales, sharks and tuna. Previous research has classified the region as generally oligotrophic, apart from late austral summer months when seasonal upwelling triggers phytoplankton blooms in the region. Based on multi-year field observations, this study analysed the interannual and interdecadal variability of the plankton community structure in this region. Pigment data indicate that nano- and pico-phytoplankton generally dominated the phytoplankton community structure with averages of 39% and 30% of the total biomass, including a relatively large proportion of nanophytoplankton (cryptophytes, haptophytes and prasinophytes) with cell sizes <5 µm, not resolved in microscopic cell counts. Nano- and pico-phytoplankton alone contributed ∼0.3 mg/m3 to the chlorophyll-a signal and therefore sustained an overall mesotrophic environment year-round. Distinct diatom blooms developed during the upwelling season within concentrated subsurface layers where chlorophyll-a concentrations increased to >1 mg/m3, characterising eutrophic conditions. The biomass of diatoms increased from <10% to ∼30% of total biomass. Diatom blooms coincided with relatively high abundances of three dominant zooplankton species (Oithona similis, Penilia avirostris and Microsetella norvegica) and/or the dinophyta Noctiluca scintillans, but events of high zooplankton abundance also occurred outside the upwelling season. The observational findings also show the occurrence of significant subsurface phytoplankton blooms in late spring, not reported before, that may also contribute to the ecosystem functioning of the region.
Czasopismo
Rocznik
Strony
434--451
Opis fizyczny
Bibliogr. 81 poz., map., rys., tab., wykr.
Twórcy
  • Flinders University, College of Science & Engineering, Bedford Park, Australia
  • Flinders University, College of Science & Engineering, Bedford Park, Australia
autor
  • South Australian Research and Development Institute (SARDI), West Beach, Australia
  • Flinders University, College of Science & Engineering, Bedford Park, Australia
autor
  • Flinders University, College of Science & Engineering, Bedford Park, Australia
autor
  • Flinders University, College of Science & Engineering, Bedford Park, Australia
  • South Australian Research and Development Institute (SARDI), West Beach, Australia
Bibliografia
  • 1. Agawin, N.S.R., Duarte, C.M., Agusti, S., 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591- 600. https://doi.org/10.4319/lo.2000.45.3.0591
  • 2. Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A., Thingstad, F., 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Progr. Ser. 10, 257-263. https://doi.org/10.3354/meps010257
  • 3. Balzano, S., Ellis, A.V., Le Lan, C., Leterme, S.C., 2015. Seasonal changes in phytoplankton on the north-eastern shelf of Kangaroo Island (South Australia) in 2012 and 2013. Oceanologia 57 (3), 251-262. https://doi.org/10.1016/j.oceano.2015.04.003
  • 4. Beiras, R., 2018. Marine Pollution Sources: Fate and Effects of Pollutants in Coastal Ecosystems. Elsevier, Amsterdam, 408 pp.
  • 5. Bird, D.F., Kalff, J., 1984. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci. 41, 1015-1023. https://doi.org/10.1139/f84-118
  • 6. Buesseler, K.O., 1998. The decoupling of production and particulate export in the surface ocean. Global Biogeochem. Cy. 12 (2), 297-310. https://doi.org/10.1029/97GB03366
  • 7. Bye, J.A.T., 1983. The general circulation in a dissipative ocean basin with longshore wind stresses. J. Phys. Oceanogr. 13 (9), 1553-1563. https://doi.org/10.1175/1520-0485(1983)0131553:TGCIAD2.0.CO;2
  • 8. Carter, C.M., Ross, A.H., Schiel, D.R., Howard-Williams, C., Hayden, B., 2005. In situ microcosm experiments on the influence of nitrate and light on phytoplankton community composition. J. Exp. Mar. Biol. Ecol. 326, 1-13. https://doi.org/10.1016/j. jembe.2005.05.006
  • 9. Chai, C., Jiang, T., Cen, J., Ge, W., Lu, S., 2016. Phytoplankton pigments and functional community structure in relation to environmental factors in the Pearl River Estuary. Oceanologia 58 (3), 201-211. https://doi.org/10.1016/j.oceano.2016.03.001
  • 10. Cirano, M., Middleton, J.F., 2004. The mean wintertime circulation along Australia’s Southern Shelves: a numerical study. J. Phys. Oceanogr. 34 (3), 668-684. https://doi.org/10.1175/2509.1
  • 11. Darley, W.M., Volcani, B.E., 1969. Role of silicon in diatom metabolism: a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp. Cell Res. 58, 334-342. https://doi.org/10.1016/0014-4827(69)90514-X
  • 12. Davies, C., Sommerville, E., 2017. National Reference Stations Biogeochemical Operations Manual Version 3.3.1. Integrated Marine Observing System. https://doi.org/10.26198/5c4a56f2a8ae3
  • 13. Doney, S.C., Lima, I., Feely, R.A., Glover, D.M., Lindsay, K., Mahowald, N., Moore, J.K., Wanninkhof, R., 2009. Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Res. Pt. II 56, 640-655. https://doi.org/10.1016/j.dsr2.2008.12.006
  • 14. Dortch, Q., Whitledge, T.E., 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res. 12, 1296-1309. https://doi.org/10.1016/0278-4343(92)90065-R
  • 15. Eriksen, R.S., Davies, C.H., Bonham, P., Coman, F.E., Edgar, S., McEnnulty, F.R., McLeod, D., Miller, M.J., Rochester, W., Slotwinski, A., Tonks, M.L., Uribe-Palomino, J., Richardson, A.J., 2019. Australia’s long-term plankton observations: The Integrated Marine Observing System National Reference Station Network. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00161
  • 16. Eveson, J.P., Hobday, A.J., Hartog, J.R., Spillman, C.M., Rough, K.M., 2015. Seasonal forecasting of tuna habitat in the Great Australian Bight. Fish. Res. 170, 39-49. https://doi.org/10.1016/j.fishres.2015.05.008
  • 17. Fenchel, T., 1982. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8, 225-231. https://doi.org/10.3354/meps008225
  • 18. Fogg, G.E., 1995. Some comments on pico-plankton and its importance in the pelagic ecosystem. Aquat. Microb. Ecol. 9, 33-39. https://doi.org/10.3354/ame009033
  • 19. Gasol, J.M., del Giorgio, P.A., Duarte, C.M., 1997. Biomass distribution of marine planktonic communities. Limnol. Oceanogr. 42, 1353-1363. https://doi.org/10.4319/lo.1997.42.6.1353
  • 20. Gill, P.C., 2002. A blue whale (Balaenoptera musculus) feeding ground in a southern Australian coastal upwelling zone. J. Cetacean Res. Manag. 4 (2), 179-184.
  • 21. Gill, P.C., Morrice, M.G., Page, B., Pirzl, R., Levings, A.H., Coyne, M., 2011. Blue whale habitat selection and within-season distribution in a regional upwelling system off southern Australia. Mar. Ecol. Prog. Ser. 421, 243-263. https://doi.org/10. 3354/meps08914
  • 22. Goldsworthy, S.D., Mackay, A.I., Bilgmann, K., Möller, L., Parra, G., Gill, P., Bailleul, F., Shaughnessy, P.D., Reinhold, S.-L., Rogers, P.J. , 2017. Status, distribution, and abundance of iconic species and apex predators in the Great Australian Bight. Final Report GABRP Project 4.1. Great Australian Bight Research Program. GABRP Res. Rep. Ser. 15, 227 pp. https://www.misa.net.au/__data/assets/pdf_file/0015/301920/Secured_GABRP_4.1_Iconic_Species_and_Apex_ Predators_Report_-_FINAL_07_12_2017.pdf (last accessed on 19 July 2022).
  • 23. Hallegraef, G.M., Bolch, C.J.S., Hill, D.R.A., Jameson, I., LeRoi, J.-M., McMinn, A., Murray, S., de Salas, M.F., Saunders, K., 2010. Algae of Australia: Phytoplankton of Temperate Coastal Waters. CSIRO Publishing, Melbourne, 432 pp.
  • 24. Hansen, B., Bjornsen, P.K., Hansen, P.J., 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395-403. https://doi.org/10.4319/lo.1994.39.2.0395
  • 25. Herzfeld, M., 1997. The annual cycle of sea surface temperature in the Great Australian Bight. Progress. Oceanogr. 39 (1), 1-27. https://doi.org/10.1016/S0079-6611(97)00010-4
  • 26. Herzfeld, M., Tomczak, M., 1999. Bottom-driven upwelling generated by eastern intensification in closed and semi-closed basins with a sloping bottom. Mar. Freshw. Res. 50, 613-628. https://doi.org/10.1071/MF98035
  • 27. Hirata, T., Hardman-Mountford, N.J., Brewin, R.J.W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., Yamanaka, Y., 2011. Synoptic relationships between surface chlorophyll-a and diagnostic pigments specific to phytoplankton functional types. Biogeosciences 8, 311-327. https://doi.org/10.5194/bg-8-311-2011
  • 28. Jennings, S., Warr, K.J., Mackinson, S., 2002. Use of size-based production and stable isotope analyses to predict trophic transfer efficiencies and predator-prey body mass ratios in food webs. Mar. Ecol. Prog. Ser. 240, 11-20. https://doi.org/10. 3354/meps240011
  • 29. Jeffrey, S., Mantoura, R., Wright, S., 2005. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO, Paris, 661 pp.
  • 30. Jøsrgensen, E.G., 1952. Effects of different silicon concentrations on the growth of diatoms. Physiol. Plant 5, 161-170. https://doi.org/10.1111/j.1399-3054.1952.tb07705.x
  • 31. Justic, D., Rabalais, N.N., Turner, R.E., 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull. 30, 41-46. https://doi.org/10.1016/0025-326x(94)00105-i
  • 32. Kämpf, J., 2010. On preconditioning of coastal upwelling in the eastern Great Australian Bight. J. Geophys. Res.-Oceans 115, C12071. https://doi.org/10.1029/2010JC006294
  • 33. Kämpf, J., 2019. Extreme bed shear stress during coastal downwelling. Ocean Dynam. 69, 581-597. https://doi.org/10.1007/s10236-019-01256-4
  • 34. Kämpf, J., Brokensha, C., Bolton, T., 2009. Hindcasts of the fate of desalination brine in large inverse estuaries: Spencer Gulf and Gulf St. Vincent, South Australia. Desalin. Water Treat. 2 (1—3), 335-344. https://doi.org/10.5004/dwt.2009.264
  • 35. Kämpf, J., Chapman, P., 2016. Upwelling Systems of the World. Springer, Switzerland, 433 pp. Kämpf, J., Doubell, M., Griffin, D., Matthews, R.L., Ward, T.M., 2004. Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys. Res. Lett. 31, L09310. https://doi.org/10.1029/2003GL019221
  • 36. Kämpf, J., Kavi, A., 2017. On the “hidden” phytoplankton blooms on Australia’s southern shelves. Geophys. Res. Lett. 44 (3), 1466-1473. https://doi.org/10.1002/2016GL072096
  • 37. Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283-288. https://doi.org/10.1007/BF00397668
  • 38. Larsen, A., Castberg, T., Sandaa, R.A., Brussaard, C.P.D., Egge, J., Heldal, M., Paulino, A., Thyrhaug, R., van Hannen, E.J., Bratbak, G., 2001. Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 221, 47-57. https://doi.org/10.3354/meps221047
  • 39. Latasa, M., 2007. Improving estimations of phytoplankton class abundances using CHEMTAX. Mar. Ecol. Progr. Ser. 329, 13-21. https://doi.org/10.3354/meps329013
  • 40. Legendre, L., LeFevre, J., 1989. Hydrodynamical singularities as controls of recycled versus export production in oceans. In: Berger, W.H., Smetacek, V.S., Wefer, G. (Eds.), Productivity of the Ocean: Present and Past. J. Wiley and Sons, New York, 49-63.
  • 41. Lennon, G.W., Bowers, D.G., Nunes, R.A., Scott, B.D., Ali, M., Boyle, J., Wenju, C., Herzfeld, M., Johansson, G., Nield, S., Petrusevics, P., Stephenson, P., Suskin, A.A., Wijffels, S.E.A., 1987. Gravity currents and the release of salt from an inverse estuary. Nature 327, 695-697. https://doi.org/10.1038/327695a0
  • 42. Le Quéré, C., Harrison, S.P., Prentice, I.C., Buitenhuis, E.T., Aumont, O., Bopp, L., Claustre, H., Da Cunha, L.C., Geider, R., Giraud, X., Klaas, C., Kohfeld, K.E., Legendre, L., Manizza, M., Platt, T., Rivkin, R.B., Sathyendranath, S., Uitz, J., Watson, A.J., Wolf-Gladrow, D., 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11, 2016-2040. https://doi.org/10. 1111/j.1365-2486.2005.1004.x
  • 43. Li, Q., McGowran, B., James, N.P., Bone, Y., 1996. Foraminiferal biofacies on the mid-latitude Lincoln Shelf, South Australia: oceanographic and sedimentological implications. Mar. Geol. 129 (3—4), 285-312. https://doi.org/10.1016/0025-3227(96)83349-4
  • 44. Leterme, S.C., Edwards, M., Seuront, L., Attrill, M.J., Reid, P.C., John, A.W.G., 2005. Decadal basin-scale changes in diatoms, dinoflagellates, and phytoplankton color across the North Atlantic. Limnol. Oceanogr. 50, 1244-1253. https://doi.org/10. 4319/lo.2005.50.4.1244
  • 45. Liu, X., Devred, E., Johnson, C., 2018. Remote sensing of phytoplankton size class in northwest Atlantic from 1998 to 2016: Biooptical algorithms comparison and application. Remote Sens. 10, 1028. https://doi.org/10.3390/rs10071028
  • 46. Mackey, M., Mackey, D., Higgins, H., Wright, S., 1996. CHEMTAXa program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265-283. https://doi.org/10.3354/meps144265
  • 47. Mann, K.H., Lazier, J.R.N., 2006. Dynamics of Marine Ecosystems: Biological—Physical Interactions in the Oceans. Wiley-Blackwell, 496 pp. https://doi.org/10.1002/9781118687901
  • 48. Marañón, E., Holligan, P.M., Barciela, R., González, N., Mouriño, B., Pazó, M.J., Varela, M., 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43-56. https://doi.org/10.3354/meps216043
  • 49. McClatchie, S., Middleton, J.F., Ward, T.M., 2006. Water mass analysis and alongshore variation in upwelling intensity in the eastern Great Australian Bight. J. Geophys. Res. 111, C08007. https://doi.org/10.1029/2004JC002699
  • 50. Michaels, A.F., Silver, M.W., 1988. Primary production, sinking fluxes, and the microbial food web. Deep-Sea Res. Pt. I 35, 473- 490. https://doi.org/10.1016/0198-0149(88)90126-4
  • 51. Middleton, J.F., Bye, J.A.T., 2007. A review of the shelf-slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland. Prog. Oceanogr. 75 (1), 1-41. https://doi.org/10.1016/j. pocean.2007.07.001
  • 52. Middleton, J.F., Cirano, M., 2002. A northern boundary current along Australia’s southern shelves: The Flinders Current. J. Geophys. Res.-Oceans 107 (C9), 3129. https://doi.org/10.1029/2000JC000701
  • 53. Möller, L.M., Attard, C.R.M., Bilgmann, K., Andrews-Goff, V., Jonsen, I., Paton, D., Double, M.C., 2020. Movements and behaviour of blue whales, satellite tagged in an Australian upwelling system. Sci. Rep. 10 (1), 21165. https://doi.org/10. 1038/s41598-020-78143-2
  • 54. Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget, M.-H., Devred, E., Bouman, H., 2008. Remote sensing of phytoplankton functional types. Remote Sens. Environ. 112, 3366-3375. https://doi.org/10.1016/j.rse.2008.01.021
  • 55. Olivos-Ortiz, A., Masó-Agustina, M., Camp-Sancho, J., 2002. Continental runoff of nutrients and their possible influence over stoichiometric relations (DIN:P:Si) in the Northwest Mediterranean waters. Cienc. Mar. 28 (4), 393-406. https://doi.org/10.7773/cm.v28i4.235
  • 56. Partensky, F., Blanchot, J., Vaulot, D., 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Inst. Océanogr. 19, 457-476.
  • 57. Paterson, J.S., Nayar, S., Mitchell, J.G., Seuront, L., 2013. Population-specific shifts in viral and microbial abundance within a cryptic upwelling. J. Marine Syst. 113—114, 52-61. https://doi.org/10.1016/j.jmarsys.2012.12.009
  • 58. Patten, N.L., van Ruth, P.D., Rodriguez, A.R., 2018. Spatial variability in picophytoplankton, bacteria and viruses in waters of the Great Australian Bight (southern Australia). Deep Sea Res. Pt. II 157—158, 46-57. https://doi.org/10.1016/j.dsr2.2018.04.009
  • 59. Peinert, R., Bodungen, B.V., Smetacek, V., 1989. Food web structure and loss rates. In: Berger, W.H., Smetacek, V.S., Wefer, G. (Eds.), Productivity in the Ocean: Present and Past. J. Wiley, Chichester, 35-48.
  • 60. Ras, J., Claustre, H., Uitz, J., 2008. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences 5, 353-369. https://doi.org/10.5194/bg-5-353-2008
  • 61. Richardson, L.E., Middleton, J.F., James, N.P., Kyser, T.K., Opdyke, B.N., 2020. Upwelling characteristics and nutrient enrichment of the Kangaroo Island upwelling region, South Australia. Cont. Shelf Res. 200, 104111. https://doi.org/10.1016/j. csr.2020.104111
  • 62. Ridgway, K.R., Condie, S., 2004. A 5500-km long boundary flow off western and southern Australia. J. Geophys. Res. 109, C04017. https://doi.org/10.1029/2003JC001921
  • 63. Roberts, S.D., van Ruth, P.D., Wilkinson, C., Bastianello, S.S., Bansemer, M.S., 2019. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 610. https://doi.org/10.3389/fmars.2019. 00610
  • 64. Roy, R., Chitari, R., Kulkarni, V., Krishna, M.S., Sarma, V.V.S.S., Anil, A.C., 2015. CHEMTAX-derived phytoplankton community structure associated with temperature fronts in the northeastern Arabian Sea. J. Marine Syst. 144, 81-91. https://doi.org/10.1016/j.jmarsys.2014.11.009
  • 65. Scharf, F.S., Juanes, F., Rountree, R.A., 2000. Predator size—prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar. Ecol. Prog. Ser. 208, 229-248. https://doi.org/10.3354/meps208229
  • 66. Schiller, A., Oke, P.R., Brassington, G.B., Entel, M., Fiedler, R., Griffin, D.A., Mansbridge, J.V., 2008. Eddy-resolving ocean circulation in the Asian-Australian region inferred from an ocean reanalysis effort. Prog. Oceanogr. 76 (3), 334-365. https://doi.org/10.1016/j.pocean.2008.01.003
  • 67. Shute, A., Kämpf, J., Doubell, M., Rodriguez, A.R., Möller, L., Baring, R., Newman, M., 2022. Variability of surface and subsurface phytoplankton blooms in a seasonal coastal upwelling system. Cont. Shelf Res. 246, 104832. https://doi.org/10.1016/j. csr.2022.104832
  • 68. Star, J.L., Mullin, M.M., 1981. Zooplankton assemblages in three areas of the North Pacific, as revealed by continuous horizontal transects. Deep Sea Res. Pt. A 28 (11), 1303-1322. https://doi.org/10.1016/0198-0149(81)90036-4
  • 69. Sverdrup, H.V., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18, 287-295. https://doi. org/10.1093/icesjms/18.3.287
  • 70. Thompson, P.A., Bonham, P., Waite, A.M., Clementson, L.A., Cherukuru, N., Hassler, C., Doblin, M.A., 2011. Contrasting oceanographic conditions and phytoplankton communities on the east and west coasts of Australia. Deep Sea Res. Pt. II 58 (5), 645-663. https://doi.org/10.1016/j.dsr2.2010.10.003
  • 71. Tomas, C.R., 1997. Identifying Marine Phytoplankton. Acad. Press, San Diego, California, 858 pp. Uitz, J., Claustre, H., Morel, A., Hooker, S.B., 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 111, C08005. https://doi.org/10.1029/2005JC003207
  • 72. Uitz, J., Stramski, D., Reynolds, R.A., Dubranna, J., 2015. Assessing phytoplankton community composition from hyperspectral measurements of phytoplankton absorption coefficient and remote-sensing reflectance in open-ocean environments. Remote Sens. Environ. 171, 58-74. https://doi.org/10.1016/j.rse. 2015.09.027
  • 73. van Dongen-Vogels, V., Seymour, J.R., Middleton, J.F., Mitchell, J.G., Seuront, L., 2011. Influence of local physical events on picophytoplankton spatial and temporal dynamics in South Australian continental shelf waters. J. Plankton Res. 33 (12), 1825-1841. https://doi.org/10.1093/plankt/fbr077
  • 74. van Dongen-Vogels, V., Seymour, J.R., Middleton, J.F., Mitchell, J.G., Seuront, L., 2012. Shifts in picophytoplankton community structure influenced by changing upwelling conditions. Estuar. Coast. Shelf Sci. 109, 81-90. https://doi.org/10.1016/j.ecss.2012.05.026
  • 75. van Ruth, P.D., Patten, N.L., Doubell, M.J., Chapman, P., Rodriguez, A.R., Middleton, J.F., 2018. Seasonal- and event-scale variations in upwelling, enrichment and primary productivity in the eastern Great Australian Bight. Deep Sea Res. Pt. II 157-158, 36-45. https://doi.org/10.1016/j.dsr2.2018.09.008
  • 76. Ward, T.M., McLeay, L.J., Dimmlich, W.F., Rogers, P.J., McClatchie, S.A.M., Matthews, R., Kämpf, J., van Ruth, P.D., 2006. Pelagic ecology of a northern boundary current system: effects of upwelling on the production and distribution of sardine (Sardinops sagax), anchovy (Engraulis australis) and southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight. Fish. Oceanogr. 15 (3), 191-207. https://doi.org/10.1111/j. 1365-2419.2006.00353.x
  • 77. Weber, T.S., Deutsch, C., 2012. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation. Nature 489, 419-422. https://doi.org/10.1038/nature11357
  • 78. Weisse, T., 1989. The microbial loop in the Red Sea: dynamics of pelagic bacteria and heterotrophic nanoflagellates. Mar. Ecol. Prog. Ser. 55, 241-250. https://doi.org/10.3354/meps 055241
  • 79. Wijeratne, S., Pattiaratchi, C., Proctor, R., 2018. Estimates of surface and subsurface boundary current transport around Australia. J. Geophys. Res.-Oceans 123, 3444-3466. https://doi.org/10.1029/2017JC013221
  • 80. Wright, S., Thomas, D., Marchant, H., Higgins, H., Mackey, M., Mackey, D., 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ’CHEMTAX’ matrix factorisation program. Mar. Ecol. Progr. Ser. 144, 285-298. https://doi.org/10.3354/meps144285
  • 81. Wright, S.W., van den Enden, R.L., Pearce, I., Davidson, A.T., Scott, F.J., Westwood, K.J., 2010. Phytoplankton community structure and stocks in the Southern Ocean (30—80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res. Pt. II 57 (9—10), 758-778. https://doi.org/10.1016/j.dsr2.2009.06.015
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb4fee52-eda8-4cb7-933c-220f6a4ce493
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.