PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of paint matrix composition and thickness of paint layer on the activity of photocatalytic paints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silicate, acrylic and latex photocatalytic paints were analyzed in regards to impact of paint matrix composition and paint layer’s thickness on performance in two photocatalytic tests. These included performances in photocatalytic decomposition of benzo[a]pyrene (BaP) and assessment of photocatalytic activity through use of smart ink test. Silicate photocatalytic paints displayed lower photocatalytic activity in comparison to acrylic and latex photocatalytic paints in both tests, despite the similar content of nanocrystalline TiO2. Measurements of depth of UV light penetration through the paints layer were performed and it appeared, that more porous structure of coating resulted in deeper penetration of UV light. In the case of acrylic paint, the thickness of the photocatalytic layer was around 9 μm, but for silicate paint DR this thickness was higher, around 21 μm.
Rocznik
Strony
113--119
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Fujishima, A., Zhang, X. & Tryk, D. (2007). Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydro. Energ. 322664-322672. DOI: 10.1016/j.ijhydene.2006.09.009.
  • 2. Fujishima, A., Zhang, X. & Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515-582. DOI:10.1016/j.surfrep.2008.10.001.
  • 3. Nakata, K. & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C. 13, 169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001.
  • 4. Ochiai, T. & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol., C. 13, 247-262. DOI: 10.1016/j.jphotochemrev.2012.07.001.
  • 5. Wang, X., Liu, L. & Xu, H. (2013). Application of Photocatalytic Concrete Paint and its Effect of Decomposing Vehicle Exhaust. AMR. 683, 98-105. DOI: 10.4028/www.scientifi c.net/ amr.683.98.
  • 6. Chen, J. & Poon, C. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 44, 1899-1906. DOI: 10.1016/j.buildenv.2009.01.002.
  • 7. Auvinen, J. & Wirtanen, L. (2008). The influence of photocatalytic interior paints on indoor air quality. Atmos. Environ. 42, 4101-4112. DOI: 10.1016/j.atmosenv.2008.01.031.
  • 8. Allen, N., Edge, M., Sandoval, G., Verran, J., Stratton, J. & Maltby, J. (2005). Photocatalytic Coatings for Environmental Applications. Photochem. Photobiol. 81, 279-290. DOI: 10.1562/2004-07-01-ra-221.1.
  • 9. Salthammer, T. & Fuhrmann, F. (2007). Photocatalytic Surface Reactions on Indoor Wall Paint. Environ. Sci. Technol. 41, 6573-6578. DOI: 10.1021/es070057m.
  • 10. Maggos, T., Bartzis, J., Liakou, M. & Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J. Hazard. Mater. 146, 668-673. DOI: 10.1016/j.jhazmat.2007.04.079.
  • 11. Paušová, Š., Krýsa, J., Jirkovský, J., Prevot, V. & Mailhot, G. (2014). Preparation of TiO2-SiO2 composite photocatalysts for environmental applications. J. Chem. Technol. Biotechnol. 89, 1129-1135. DOI: 10.1002/jctb.4436.
  • 12. Águia, C., Ângelo, J., Madeira, L. & Mendes, A. (2010). Influence of photocatalytic paint components on the photoactivity of P25 towards NO abatement. Catal. Today. 151, 77-83. DOI: 10.1016/j.cattod.2010.01.057.
  • 13. Marolt, T., Škapin, A., Bernard, J., Živec, P. & Gaberšček, M. (2011). Photocatalytic activity of anatase-containing facade coatings. Surf. Coat. Technol. 206, 1355-1361. DOI: 10.1016/j. surfcoat.2011.08.053.
  • 14. Baudys, M., Krýsa, J., Zlámal, M. & Mills, A. (2015). Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem. Eng. J. 261, 83-87. DOI: 10.1016/j.cej.2014.03.112.
  • 15. Monteiro, R., Lopes, F., Silva, A., Ângelo, J., Silva, G., Mendes, A., Boaventura, R.A.R. & Vilar, V.J.P. (2014). Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxification. Appl. Catal., B. 147, 988-999. DOI: 10.1016/j.apcatb.2013.09.031.
  • 16. Tryba, B., Homa, P., Wróbel, R. & Morawski, A. (2014). Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Influence of paint composition. J. Photochem. Photobiol., A. 286, 10-15. DOI: 10.1016/j.jphotochem.2014.04.012.
  • 17. Zuccheri, T., Colonna, M., Stefanini, I., Santini, C. & Gioia, D. (2013). Bactericidal Activity of Aqueous Acrylic Paint Dispersion for Wooden Substrates Based on TiO2 Nanoparticles Activated by Fluorescent Light. Mater. 6, 3270-3283. DOI: 10.3390/ma6083270.
  • 18. Pal, S., Contaldi, V., Licciulli, A. & Marzo, F. (2016). Self-Cleaning Mineral Paint for Application in Architectural Herit. Coat. 6, 48-57. DOI: 10.3390/coatings6040048.
  • 19. Akpan, U. & Hameed, B. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 170, 520-529. DOI: 10.1016/j.jhazmat.2009.05.039.
  • 20. Barrocas, B., Monteiro, O., Jorge, M. & Sério, S. (2013). Photocatalytic activity and reusability study of nanocrystalline TiO2 films prepared by sputtering technique. Appl. Surf. Sci. 264, 111-116. DOI: 10.1016/j.apsusc.2012.09.136.
  • 21. Addamo, M., Augugliaro, V., Di Paola, A., García-López, E., Loddo, V., Marcì, G. & Palmisano, L. (2008). Photocatalytic thin films of TiO2 formed by a sol-gel process using titanium tetraisopropoxide as the precursor. Thin Sol. Films. 516, 3802-3807. DOI: 10.1016/j.tsf.2007.06.139.
  • 22. Ismail, A., Bahnemann, D., Rathousky, J., Yarovyi, V. & Wark, M. (2011). Multilayered ordered mesoporous platinum/ titania composite films: does the photocatalytic activity benefit from the film thickness? J. Mater. Chem. 21, 7802-7810. DOI: 10.1039/c1jm10366k.
  • 23. Hao, D., Yang, Z., Jiang, C. & Zhang, J. (2014). Synergistic photocatalytic effect of TiO2 coatings and p-type semiconductive SiC foam supports for degradation of organic contaminant. Appl. Catal. B. 144, 196-202. DOI: 10.1016/j. apcatb.2013.07.016.
  • 24. Malagutti, A., Mourão, H., Garbin, J. & Ribeiro, C. (2009). Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal. B. 90, 205-212. DOI: 10.1016/j. apcatb.2009.03.014.
  • 25. Kumar, K., Raju, N. & Subrahmanyam, A. (2011). Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering. Appl. Surf. Sci. 257, 3075-3080. DOI: 10.1016/j.apsusc.2010.10.119.
  • 26. Chen, Y. & Dionysiou, D. (2006). Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Appl. Catal. B. 69, 24-33. DOI: 10.1016/j.apcatb.2006.05.002.
  • 27. Wu, C., Lee, Y., Lo, Y., Lin, C. & Wu, C. (2013). Thickness- dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol-gel spin coating. Appl. Surf. Sci. 280, 737-744. DOI: 10.1016/j.apsusc.2013.05.053.
  • 28. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Wells, N., Krýsa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Søgaard, E.G., Banerjee, S., Fagan, R. & Pillai, S.C. (2014). Photocatalytic activity indicator inks for probing a wide range of surfaces. J. Photochem. Photobiol., A. 290 63-71. DOI: 10.1016/j.jphotochem.2014.06.007.
  • 29. Mills, A., O’Rourke, C., Lawrie, K. & Elouali, S. (2014). Assessment of the Activity of Photocatalytic Paint Using a Simple Smart Ink Designed for High Activity Surfaces. ACS Appl. Mater. Inter. 6, 545-552. DOI: 10.1021/am4046074.
  • 30. Mills, A., Hepburn, J., Hazafy, D., O’Rourke, C., Krýsa, J., Baudys, M., Zlamal, M., Bartkova, H., Hill, C.E., Winn, K.R., Simonsen, M.E., Søgaard, E.G., Pillai, S.C., Leyland, N.S., Fagan, R., Neumann, F., Lampe, C. & Graumann, T. (2013). A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces, J. Photoch. Photobio. A. 272, 18-20. DOI: 10.1016/j.jphotochem.2013.08.004.
  • 31. Tryba, B., Wróbel, R., Homa, P. & Morawski, A. (2015). Improvement of photocatalytic activity of silicate paints by removal of K2SO4. Atmos. Environ. 115, 47-52. DOI: 10.1016/j. atmosenv.2015.05.047.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb47a5ca-966f-4666-b72f-5a8be34373ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.