PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing system impedance based on data regrouping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, assessing supply system impedance has become crucial due to the concerns on power quality and the proliferation of distributed generators. In this paper, a novel method is shown for passive measurement of system impedances using the gapless waveform data collected by a portable power quality monitoring device. This method improves the overall measurement accuracy through data regrouping. Compared with the traditional methods that use the consecutive measurement data directly, the proposed method regroups the data to find better candidates with less flotation on the system side. Simulation studies and extensive field tests have been conducted to verify the effectiveness of the proposed method. The results indicate that the proposed method can serve as a useful tool for impedance measurement tasks performed by utility companies.
Rocznik
Strony
191--208
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wzory
Twórcy
  • Sichuan University, The College of Electrical and Engineering, Chengdu 610065, China
  • Sichuan University, The College of Electrical and Engineering, Chengdu 610065, China
autor
  • Sichuan University, The College of Electrical and Engineering, Chengdu 610065, China
autor
  • Electric Power Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310014, China
Bibliografia
  • [1] Abdelkader, S. M., & Morrow, D. J. (2014). Online Thevenin equivalent determination considering system side changes and measurement errors. IEEE Transactions on Power Systems, 30(5), 2716-2725. https://doi.org/10.1109/TPWRS.2014.2365114
  • [2] Li, W., Wang, Y., & Chen, T. (2010). Investigation on the Thevenin equivalent parameters for online estimation of maximum power transfer limits. IET generation, transmission & distribution, 4(10), 1180-1187. https://doi.org/10.1049/iet-gtd.2010.0342
  • [3] Dilek, M., Broadwater, R., & Sequin, R. (2003). Calculating short-circuit currents in distribution systems via numerically computed Thevenin equivalents. Proceedings IEEE PES Transmission and Distribution Conference and Exposition, USA. https://doi.org/10.1109/TDC.2003.1335075
  • [4] Cobreces, S., Bueno, E. J., Pizarro, D., Rodriguez, F. J., & Huerta, F. (2009). Grid impedance monitoring system for distributed power generation electronic interfaces. IEEE Transactions on Instrumentation and Measurement, 58(9), 3112-3121. https://doi.org/10.1109/TIM.2009.2016883
  • [5] Patsalides, M., Efthymiou, V., Stavrou, A., & Georghiou, G. E. (2015). Simplified distribution grid model for power quality studies in the presence of photovoltaic generators. IET Renewable Power Generation, 9(6), 618-628. https://doi.org/10.1049/iet-rpg.2014.0231
  • [6] Al-Mohammed, A. H., & Abido, M. A. (2014). An adaptive fault location algorithm for power system networks based on synchrophasor measurements. Electric Power Systems Research, 108, 153-163. https://doi.org/10.1016/j.epsr.2013.10.013
  • [7] Su, H. Y., & Liu, T. Y. (2018). Robust Thevenin equivalent parameter estimation for voltage stability assessment. IEEE Transactions on Power Systems, 33(4), 4637-4639. https://doi.org/10.1109/TPWRS.2018.2821926
  • [8] An, T., Zhou, S., Yu, J., & Zhang, Y. (2006). Tracking Thevenin equivalent parameters on weak voltage load bus groups. IEEE PES Power Systems Conference and Exposition, USA. https://doi.org/10.1109/PSCE.2006.296147
  • [9] Tsukamoto, M., Ogawa, S., Natsuda, Y., Minowa, Y., & Nishimura, S. (2000). Advanced technology to identify harmonics characteristics and results of measuring. Proceedings of the Ninth International Conference on Harmonics and Quality of Power, USA. https://doi.org/10.1109/ICHQP.2000.897051
  • [10] Sumner, M., Palethorpe, B., & Thomas, D. W. (2004). Impedance measurement for improved power quality-part 1: the measurement technique. IEEE Transactions on Power Delivery, 19(3), 1442-1448. https://doi.org/10.1109/TPWRD.2004.829873
  • [11] Wang, W., Nino, E. E., & Xu, W. (2007). Harmonic impedance measurement using a thyristor controlled short circuit. IET Generation, Transmission & Distribution, 1(5), 707-713. https://doi.org/10.1049/iet-gtd:20060488
  • [12] Czarnecki, L. S., & Staroszczyk, Z. (1996). On-line measurement of equivalent parameters for harmonic frequencies of a power distribution system and load. IEEE transactions on instrumentation and measurement, 45(2), 467-472. https://doi.org/10.1109/19.492769
  • [13] Nagpal, M., Xu, W., & Sawada, J. (1998). Harmonic impedance measurement using three-phase transients. IEEE Transactions on Power Delivery, 13(1), 272-277. https://doi.org/10.1109/61.660889
  • [14] Staroszczyk, Z. (2005). A method for real-time, wide-band identification of the source impedance in power systems. IEEE Transactions on Instrumentation and Measurement, 54(1), 377-385. https://doi.org/10.1109/TIM.2004.838111
  • [15] Langella, R., & Testa, A. (2006). A new method for statistical assessment of the system harmonic impedance and of the background voltage distortion. International Conference on Probabilistic Methods Applied to Power Systems, Sweden. https://doi.org/10.1109/PMAPS.2006.360349
  • [16] Borkowski, D., & Barczentewicz, S. (2014). Power grid impedance tracking with uncertainty estimation using two stage weighted least squares. Metrology and Measurement Systems, 21(1), 99-110. https://doi.org/10.2478/mms-2014-0010
  • [17] Duda, K., Borkowski, D., & Bień, A. (2009). Computation of the network harmonic impedance with Chirp-Z transform. Metrology and Measurement Systems, 16(2), 299-312.
  • [18] Yang, J., Li, W., Chen, T., Xu, W., & Wu, M. (2010). Online estimation and application of power grid impedance matrices based on synchronised phasor measurements. IET generation, transmission & distribution, 4(9), 1052-1059. https://doi.org/10.1049/iet-gtd.2010.0021
  • [19] Liu, Z., Xu, Y., Jiang, H., & Tao, S. (2020). Study on Harmonic Impedance Estimation and Harmonic Contribution Evaluation Index. IEEE Access, 8, 59114-59125. https://doi.org/10.1109/ACCESS.2020.2982950
  • [20] Wang, B., Ma, G., Xiong, J., Zhang, H., Zhang, L., & Li, Z. (2018). Several sufficient conditions for harmonic source identification in power systems. IEEE Transactions on Power Delivery, 33(6), 3105-3113. https://doi.org/10.1109/TPWRD.2018.2870051
  • [21] Karimi-Ghartemani, M., & Iravani, M. R. (2005). Measurement of harmonics/interharmonics oftime-varying frequencies. IEEE Transactions on Power Delivery, 20(1), 23-31. https://doi.org/10.1109/TPWRD.2004.837674
  • [22] Xu, W., Ahmed, E. E., Zhang, X., & Liu, X. (2002). Measurement of network harmonic impedances: practical implementation issues and their solutions. IEEE Transactions on Power Delivery, 17(1), 210-216. https://doi.org/10.1109/61.974209
  • [23] Arefifar, S. A., & Xu, W. (2009). Online tracking of power system impedance parameters and field experiences. IEEE Transactions on Power Delivery, 24(4), 1781-1788. https://doi.org/10.1109/TPWRD.2009.2021046
  • [24] Abdelkader, S. M., & Morrow, D. J. (2012). Online tracking of Thévenin equivalent parameters using PMU measurements. IEEE Transactions on Power Systems, 27(2), 975-983. https://doi.org/10.1109/tpwrs.2011.2178868
  • [25] Hui, J., Freitas, W., Vieira, J. C., Yang, H., & Liu, Y. (2012). Utility harmonic impedance measurement based on data selection. IEEE Transactions on Power Delivery, 27(4), 2193-2202. https://doi.org/10.1109/TPWRD.2012.2207969
  • [26] Hui, J., Yang, H., Lin, S., & Ye, M. (2010). Assessing utility harmonic impedance based on the covariance characteristic of random vectors. IEEE Transactions on Power Delivery, 25(3), 1778-1786. https://doi.org/10.1109/TPWRD.2010.2046340
  • [27] Karimzadeh, F., Esmaeili, S., & Hosseinian, S. H. (2016). Method for determining utility and consumer harmonic contributions based on complex independent component analysis. IET Generation, Transmission & Distribution, 10(2), 526-534. https://doi.org/10.1049/iet-gtd.2015.0997
  • [28] Zhao, X., & Yang, H. (2015). A new method to calculate the utility harmonic impedance based on FastICA. IEEE Transactions on Power Delivery, 31(1), 381-388. https://doi.org/10.1109/TPWRD.2015.2491644
  • [29] Chen, F., Mao, N., Wang, Y., Wang, Y., & Xiao, X. (2019). Improved utility harmonic impedance measurement based on robust independent component analysis and bootstrap check. IET Generation, Transmission & Distribution, 14(5), 910-919. https://doi.org/10.1049/iet-gtd.2019.1153
  • [30] IEEE Standards Association (2009). IEEE Recommended Practice for Monitoring Electric Power Quality (IEEE Standard 1159-2019), 1-98. https://doi.org/10.1109/IEEESTD.2019.8796486
  • [31] Borkowski, D., & Bien, A. (2009). Improvement of accuracy of power system spectral analysis by coherent resampling. IEEE Transactions on Power Delivery, 24(3), 1004-1013. https://doi.org/10.1109/TPWRD.2009.2013662
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb475a15-ac37-49e3-9bd3-52000ca1fc17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.