PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of sonication reactor geometry on cell disruption and protein release from yeast cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The measured rate of release of intercellular protein from yeast cells by ultrasonication was applied for evaluating the effects of sonication reactor geometry on cell disruption rate and for validation of the simulation method. Disintegration of two strains of Saccharomyces cerevisiae has been investigated experimentally using a batch sonication reactor equipped with a horn type sonicator and an ultrasonic processor operating at the ultrasound frequency of 20 kHz. The results have shown that the rate of release of protein is directly proportional to the frequency of the emitter surface and the square of the amplitude of oscillations and strongly depends on the sonication reactor geometry. The model based on the Helmholtz equation has been used to predict spatial distribution of acoustic pressure in the sonication reactor. Effects of suspension volume, horn tip position, vessel diameter and amplitude of ultrasound waves on the spatial distribution of pressure amplitude have been simulated. A strong correlation between the rate of protein release and the magnitude of acoustic pressure and its spatial distribution has been observed. This shows that modeling of acoustic pressure is useful for optimization of sonication reactor geometry.
Rocznik
Strony
475--–489
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
Bibliografia
  • 1. Bailey J.E., Ollis D.F., 1986.Biochemical engineering fundamentals. McGraw-Hill Book Company, New York.
  • 2. Bałdyga J., Makowski Ł., Orciuch W., Sauter C., Schuchmann H.P., 2008. Deagglomeration processes in high-shear devices.Chem. Eng. Res. Des., 86, 1369–1381. DOI: 10.1016/j.cherd.2008.08.016.
  • 3. Crum L., 1988. Cavitation microjets as a contributory mechanism for renal disintegration.ESWL. J. Urol., 148,1587–1590. DOI: 10.1016/S0022-5347(17)42132-X.
  • 4. Doulah M.S., 1977. Mechanism of disintegration of biological cells in ultrasonic cavitation.Biotechnol. Bioeng.,19, 649–660. DOI: 10.1002/bit.260190504.
  • 5. Elmer 6.0, http://www.csc.fi/elmer.
  • 6. Feliu J.X., Cubarsi R., Villaverde A., 1998. Optimized release of recombinant proteins by ultrasonication of E. colicells.Biotechnol. Bioeng., 58, 536–540. DOI: 10.1002/(SICI)1097-0290(19980605)58:5<536::AID-BIT10>3.0.CO;2-9.
  • 7. Gao S., Hemar Y., Ashokkumar M., Paturel S., Gillian D. Lewis G. D., 2014. Inactivation of bacteria and yeastusing high-frequency ultrasound treatment.Water Res., 60, 93–104. DOI: 10.1016/j.watres.2014.04.038.
  • 8. Garcia R.A., Clevenstine S.M, Piazza G.J., 2015. Ultrasonic processing for recovery of chicken erythrocyte hemo-globin.Food Bioprod. Process., 94, 1–9. DOI: 10.1016/j.fbp.2014.12.002
  • 9. Hohnadel, M., Felden, L., Fijuljanin D., Jouette, S., Chollet, R., 2014. A new ultrasonic high-throughput instrumentfor rapid DNA release from microorganisms.J. Microbiol. Methods, 99, 71–80. DOI: 10.1016/j.mimet.2014.02.004.
  • 10. Lida Y., Tuziuti T., Yasui K., Kozuks T., Towata A., 2008. Protein release from yeast cells as an evaluation methodof physical effects in ultrasonic field.Ultrason. Sonochem., 15, 995–1000. DOI: 10.1016/j.ultsonch.2008.02.013.
  • 11. Kapucua H., Gulsoy N., Mehmetoglu U., 2000. Disruption and protein release kinetics by ultrasonication ofAce-tobacter peroxydanscells.Biochem. Eng. J., 5, 57–62. DOI: 10.1016/S1369-703X(99)00065-0.
  • 12. Klima J., Frias-Ferrer A., Gonzales-Garcia J., Ludvik J., Saez V., Iniesta J., 2007. Optimization of 20 kHz sonore-actor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison withexperimental results.Ultrason. Sonochem., 16, 250–259. DOI: 10.1016/j.ultsonch.2006.01.001.
  • 13. Liu D., Zeng X.-A, Da-Wen Sun D.W., Han Z., 2013. Disruption and protein release by ultrasonication of yeastcells.Innovative Food Sci. Emerg. Technol., 18, 132–137. DOI: 10.1016/j.ifset.2013.02.006.
  • 14. Louisnard O., Gonzales-Garcia J., Tudela I., Klima J., Saez V., Vargas-Hernandez Y., 2009. FEM simulationof a sono-reactor accounting for vibration of the boundaries.Ultrason. Sonochem., 14, 19–28. DOI: 10.1016/j.ultsonch.2008.07.008.
  • 15. Lowry O.H., Rosebrough N.J., Farr A.L, Randall R.J., 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem., 193, 265–275.
  • 16. Rai M., Padh H., 2001. Expression systems for production of heterologous proteins.Current Science, 80(9), 1121–1128.
  • 17. Raman V., Abbas A., Joshi S.C., 2006. Mapping local cavitation events in high intensity ultrasound fields.Pro-ceeding of the COMSOL Users Conference. Bangalore, 2006, 1–6.
  • 18. Smith A.E., Moxham K.E., Middelberg A.P.J., 2000. Wall material properties of yeast cells. Part II. Analysis.Chem. Eng. Sci., 55, 2043–2053. DOI: 10.1016/S0009-2509(99)00501-1.
  • 19. Temkin S., 2005.Suspension acoustics. Cambridge University Press. DOI: 10.1017/CBO9780511546129.001.
  • 20. Tudela I., Saez V., Esclapez M. D., Diez-Garcia M. I., Bonete P., Gonzales-Garcia J., 2014. Simulation of thespatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: A review.Ultrason.Sonochem., 21, 909–919. DOI: 10.1016/j.ultsonch.2013.11.012.
  • 21. Zhang N., Gardner D.C., Oliver S.G., Stateva L.I., 1999. Genetically controlled cell lysis in the yeastSaccha-romyces cerevisiae.Biotechnol. Bioeng., 64, 607–615. DOI: 10.1002/(SICI)1097-0290(19990905)64:5<607::AID-BIT11>3.0.CO;2-0.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb445989-8ec5-4167-8dff-801edd4e5c11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.