PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to elaborate a two-dimensional approach for unipennate and bipennate striated skeletal muscle modelling. Behavior of chosen flat pennate muscle is modelled as a rheological system composed of serially linked passive and active fragments having different mechanical properties. Each fragment is composed of three elements: mass element, elastic element and viscous element. Each active fragment furthermore contains the contractile element. Proposed approach takes into consideration that muscle force depends on a planar arrangement of muscle fibers. Paper presents results of numerical simulations, conclusions deduced on the base of these results and a concept of experimental verification of proposed models.
Twórcy
autor
  • Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Lodz University of Technology, Lodz, Poland
autor
  • Lodz University of Technology, Lodz, Poland
  • Lodz University of Technology, Lodz, Poland
autor
  • Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] Nigg BM, Herzog W. Biomechanics of the musculoskeletal system. Chichester: John Wiley & Sons; 1994.
  • [2] Narici M. Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J Electromyogr Kinesiol 1999;9:97–103.
  • [3] Zajac F. Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. Crit Rev Biomed Eng 1989;17:359–410.
  • [4] Aagaard P, Andersen JL, Poulsen PD, Leffers AM, Wagner A, Magnussin SP, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 2001;534.2:613–23.
  • [5] Delp SL. Surgery simulation – a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. PhD. Thesis. Stanford: Stanford University Press; 1990.
  • [6] Huijing PA. Muscle, the motor of movement: properties in function, experiment and modeling. J Electromyogr Kinesiol 1998;8:61–77.
  • [7] McGowan CP, Neptune RR, Herzog W. A phenomenological model and validation of shortening-induced force depression during muscle contractions. J Biomech 2010;43:449–54.
  • [8] Ambrósio J, Quental C, Pilarczyk B, Folgado J, Monteiro J. Multibody biomechanical models of the upper limb. Procedia IUTAM 2011;2:4–17.
  • [9] van der Bogert AJ, Blana D, Heinrich D. Implicit methods for efficient musculoskeletal simulation and optimal control. Procedia IUTAM 2011;2:297–316.
  • [10] McGowan CP, Neptune RR, Herzog W. A phenomenological muscle model to assess history dependent effects in human movement. J Biomech 2013;46:151–7.
  • [11] Quental C, Folgado J, Abrosio J, Monteiro J. A new shoulder model with a biologically inspired glenohumeral joint. Med Eng Phys 2016;38:969–77.
  • [12] Yucesoy CA, Koopman BHFJM, Huijing PA, Grootenboer HJ. Three dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model. J Biomech 2002;35:1253–62.
  • [13] Lemos RR, Epstein M, Herzog W, Wyvill BA. Framework for structured modeling of skeletal muscle. Comput Methods Biomech Biomed Eng 2004;7(6):305–17.
  • [14] Blemker SS, Delp SL. Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 2005;33(5):661–73.
  • [15] Blemker SS, Pinsky PM, Delp SL. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 2005;38:657–65.
  • [16] Blemker SS, Delp SL. Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J Biomech 2006;39:1383–91.
  • [17] Heidlauf T, Klotz T, Rode C, Altan E, Bleiler C, Siebert T, et al. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction. Biomech Model Mechanobiol 2016;1–15.
  • [18] Virgilio KM, Martin KS, Peirce SM, Blemker SS. Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus 2015;5(20140080):1–10.
  • [19] Wojnicz W, Zagrodny B, Ludwicki M, Awrejcewicz J, Wittbrodt E. Mathematical model of pennate muscle. Dynamical Systems: Mechatronics and Life Sciences. DSTA 2015 Conference. Lodz: Department of Automation, Biomechanics and Mechatronics. Lodz University of Technology; 2015. p. 595–608.
  • [20] Garner BA, Pandy MG. Estimation of musculotendon properties in the human upper limb. Ann Biomed Eng 2003;31:207–20.
  • [21] Wojnicz W, Wittbrodt E. Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta Bioeng Biomech 2009;11:15–21.
  • [22] Wojnicz W, Wittbrodt E. Application of muscle model to the musculoskeletal modeling. Acta Bioeng Biomech 2012;14:29–39.
  • [23] Awrejcewicz J, Kudra G, Zagrodny B. Nonlinearity of muscle stiffness. Theor Appl Mech Lett 2012;2(5):1–3.
  • [24] Soderberg GL, Kinesiology:. Application to pathological motion. Baltimore: Williams & Wilkins; 1986.
  • [25] Garner BA, Pandy MG. Musculoskeletal model of the upper limb based on the Visible Human Male Dataset. Comput Methods Biomech Biomed Eng 2001;4:93–126.
  • [26] Noorkoiv M, Stavnsbo A, Aagaard P, Blazevic AJ. In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography. J Appl Physiol 2010;109(6):1974–9.
  • [27] Csapo R, Malis V, Hodgson J, Sinha S. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women. J Appl Physiol 2014;116(8):961–9.
  • [28] Neatpisarnvanit C, Suthakorn J. Intramedullary nail distal hole axis estimation using Blob analysis and Hough transform. Robotics, Automation and Mechatronics, IEEE Conference. 2006. pp. 1–6.
  • [29] Parsa Y, Hosseinzadeh H, Effatparvar M. Development Hough transform to detect straight lines using pre-processing filter. Int J Inform Security Syst Manage 2015;4 (2):448–56.
  • [30] Trsagarakis NG, Caldwell DG. Development and control of a ‘‘soft-actuated' exoskeleton for use in physiotherapy and training. Autonomous Robots 2003;15:21–33.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb3cf90c-b6b4-4612-bd9a-ecf6163c426e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.