PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy support vector regression for permeability estimation of petroleum reservoir using well logs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we propose a three-step approach to predict permeability. First, by using Electrofacies Analysis (EA), data are classified into several clusters. We take advantage of EA to overcome abrupt changes of permeability which its unpredictability prevents a machine to be learned. EA is also helpful for wells that suffer from core data. Second, fuzzy membership functions are applied on data points in each Electrofacies Log (EL). Third, Support Vector Regression (SVR) is employed to predict permeability using fuzzy clustered data for areas with core missing data. To perform this process, we applied the proposed technique on four well sets of a gas field located in South of Iran; three wells devoted to training and the fourth remained for testing operation. Seven ELs derived using Multi Regression Graph-Based Clustering (MRGC) method. MRGC is able to estimate more appropriate number of clusters without prior knowledge compared to other three algorithms for our case-study area. Then, fuzzy membership functions applied to data. Thereafter, SVR applied to both fuzzy and not-fuzzy ELs. Consequently, the predicted permeability log for both fuzzy and not-fuzzy inputs correlated to real permeability (core data obtained from plugs in laboratory) in the test well. Finally, predicted permeability for each face merged together to make an estimated permeability for the whole test well. The results show that predicted permeability obtained from application of SVR on fuzzy data (FSVR) has a notably better correlation with core data for both clusters individually and the whole data compared to SVR.
Czasopismo
Rocznik
Strony
161--172
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Institutes of Geophysics, University of Tehran, Tehran, Iran
  • Institutes of Geophysics, University of Tehran, Tehran, Iran
autor
  • Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Aghchelou M, Nabi-Bidhendi M, Shahvar M.B (2012) Lithofacies estimation by multi resolution graph-based clustering of petrophysical well logs: case study of south pars gas field of Iran, SPE 16299
  • 2. Al-Anazi AF, Gates DI (2012) Support vector regression to predict porosity and permeability: effect of sample size. Comp Geosci 39:64
  • 3. Al-Mudhafar W, (2020) Integrating electrofacies and well logging data into regression and machine learning approaches for improved permeability estimation in a carbonate reservoir in a giant southern iraqi oil field, offshore technology conference, houston, Texas, ISBN: 97–1–61399–707–9
  • 4. Ameri S, Molnar D and Mohaghegh S (1993) Permeability evaluation in heterogeneous formations using geophysical well logs and geological interpretations SPE Western Regional Meeting (Anchorage, AK) SPE 26060
  • 5. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York, pp 325–344
  • 6. Chen Si B (2005) Determining soil hydraulic properties from tension infiltrometer measurements: fuzzy regression. Soil Sci Soc Am J 69:1931–1941
  • 7. Criollo D., Marin Z, Vasquez D (2016) Advanced electrofacies modelling and permeability prediction: a case study incorporating multi-resolution core, nmr and image log textural information into a carbonate facies study, SPWLA 22nd Formation evaluation symposium of Japan, SPWLA-JFES-2016-K
  • 8. Davis J (2018) Handbook of mathematical geosciences, In: Electrofacies in Reservoir Characterization, Springer, Cham, pp 211–222.
  • 9. Fiandaca G, Maurya PK, Balbarini N, Hordt A, Christiansen AV, Foged N, Bjerg PL, Auken E (2018) Permeability estimation directly from logging-while-drilling induced polarization data. Water Resour Res 54(4):2851–2870
  • 10. Gan Z, Griffin T, Dacy J, Xie H., Lee R, (2018) Fast pressure-decay core permeability measurement for tight rocks, SPWLA 59th Annual logging symposium, London, UK.
  • 11. Glover WJP (2000) Petrophysics MSc Course Notes. Department of geology and petroleum geology university of Aberdeen, UK, pp 21–31
  • 12. Gunn SR (1998) Support vector machines for classification and regression, University of Southampton, 10 Ma.
  • 13. Hao P-Y, Chiang J-H (2007) A fuzzy model of support vector regression machine. Int J Fuzzy Syst 9(1):45–50
  • 14. Hasan M, Sobhan M (2020) Describing fuzzy membership function and detecting the outlier by using five number summary of data. Am J Comp Math 10:410–424
  • 15. Hosseinzadeh S, Shaghaghi M (2020) GPR data regression and clustering by the fuzzy support vector machine and regression. Progress in Electromagn Res M 93:175–184
  • 16. Iturraran-Viveros U, Parra J (2014) Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. J Appl Geophys 107:45–54
  • 17. Khan Mohammadi M, Sherkati SH (2010) Fracturing analysis in south pars gas feild. Explor Prod Mon 77:43–49
  • 18. Khoshbakht F, Mohammadnia M (2013) Assessment of clustering methods for predicting permeability in a heterogeneous carbonate reservoir, J Pet Sci Technol, 2(2)
  • 19. Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. In: Drilling and production practice. American Petroleum Institute
  • 20. Kozeny J (1927) Uber kapillare leitung der wasser in boden. royal academy of science, Vienna. Proc Class I 136:271–306
  • 21. Le VH, Liu F, Tran DK (2009) Fuzzy linguistic logic programming and its applications. Theory Practice Logic Progr. https://doi.org/10.1017/S1471068409003779
  • 22. Leverett MC (1941) Capillary behaviour in porous solids Paper SPE-941152-G. AIME Trans. https://doi.org/10.2118/941152-G
  • 23. Li Z, Xie Y, Li X, Zhao W (2021) Prediction and application of porosity based on support vector regression model optimized by adaptive dragonfly algorithm. Energy Sour, Part A: Recover, Util Environ Eff. https://doi.org/10.1080/15567036.2019.1634775
  • 24. Liaghat M, Nuraei-nedhad M, Adabi M (2021) Determination and interpretation of electrofacies using som neural network and its application to prediction of khami group facies in marun oil field (South West Iran). J Pet Res 31:96–111
  • 25. Lim KM, Sim YC, Oh KW (2002) A face recognition system using fuzzy logic and artificial neural network, IEEE. [1992 Proceedings] IEEE International conference on fuzzy systems, USA
  • 26. Lin C, Wang S (2002) Fuzzy support vector machines. IEEE Trans Net. https://doi.org/10.1109/72991432
  • 27. Mohaghegh S (2000) Virtual-intelligence applications in petroleum engineering: part I Artificial neural networks. J Pet Technol 52:64–73
  • 28. Nashawi IS, Malallah A (2009) Improved electrofacies characterization and permeability predictions in sandstone reservoirs using a data mining and expert system approach. Petrophysics 50(03)
  • 29. Negi JK, Verma CP, Kumar A, Prasad US, Lal C (2006) Predicting lithofacies using artificial neural network and log-core correlations, 6th international conference and exposition on petroleum geophysics, Kolkata. pp 809–811
  • 30. Nourani V, Alami MT, Vousoughi FD (2016) Self-organizing map clustering technique for ANN- based spatiotemporal modeling of groundwater quality parameters. J Hydroinf 18:288–309
  • 31. Novikoff ABJ (1962) On convergence proofs on perceptrons. In: Proceedings of the symposium on the mathematical theory of automata, 12: 615–622
  • 32. Okwu M, Nwachukwu AN (2019) A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J Petrol Explor Prod Technol 9:1555–1568
  • 33. Rafik B, Kamel B (2016) Prediction of permeability and porosity from well log data using the nonparametric regression with multivariate analysis and neural network Hassi R’mel Field, Algeria. Egyptian J Pet 26(3):763–778
  • 34. Rustam Z, Hidayat, Nurrimah R (2019) Indonesia composite index prediction using fuzzy support vector regression with fisher score feature selection. Int J Adv Sci Eng Inform Technol 9(1):21
  • 35. Serra O, Abbott HT (1980) The contribution of logging data to sedimentology and stratigraphy. In: SPE 9270, 55th technical conference, Dallas, TX, pp 19
  • 36. Shen S, Fang Z, Li X (2020) (2020), laboratory measurements of the relative permeability of coal, a review. Energies 13(21):5568
  • 37. Silva L, Avanis G, Schiozer D (2020) Support vector regression for petroleum reservoir production forecast considering geostatistical realizations. SPE Res Eval Eng 23(04):1343–1357
  • 38. Singh H, Myshakin E, Seol Y (2020) A novel relative permeability model for gas and water flow in hydrate-bearing sediments with laboratory and field-scale application. Sci Rep. https://doi.org/10.1038/s41598-020-62284-5
  • 39. Smith C, Hamilton L (2014) Carbonate reservoir permeability from nuclear magnetic resonance logsIPTC-17869-MS Int. Petroleum Technology Conf. Kuala Lumpur
  • 40. Suykens JAK, Van Gestel T, Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore
  • 41. Thomeer JH (1960) Introduction of a pore geometrical factor defined by the capillary pressure curve. J Pet Technol. https://doi.org/10.2118/1324-G
  • 42. Vapnik VN (1982) Estimation of dependences based on empirical data. Springer, Berlin
  • 43. Vapnik VN (1995) The nature of statitical learning theory. Springer, New York
  • 44. Vapnik VN, Chervonenkis A (1979) Theory of pattern recognition [in Russian]. Nauka, Moscow (German Translation: Wapnik W, Tscherwonenkis A, Theories der Zeichenerkennung, Akademie-Verlag, Berlin
  • 45. Ye S, Rabiller P, (2000) A new tool for electrofacies analysis: multi resolution graph-based clustering, SPWLA 41st annual logging symposiu.
  • 46. Zadeh. L.A. (1965) Fuzzy Sets. Inf Control 8(3):338–353
  • 47. Zhang D, Lin J, Peng Q, Wang D, Yang T, Sorooshian S, Liu X, Zhuang J (2018) Modeling and simulating of reservoir operation using the artificial neural network support vector regression, deep learning algorithm. J Hydrol 565:720–736
  • 48. Zhang R, Duan X, Hao L, (2010) Fuzzy support vector regression for function approximation with noises, International conference on computer application and system modeling (ICCASM 2010)
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb31bb6a-5857-487c-adb7-c40c64887017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.