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Abstract: Current research in robot compliance control is unable to take both transient contact force overshoots and steady-state force 
tracking problems into account. To address this problem, we propose a fuzzy fractional order (FO) adaptive impedance controller to avoid 
the force overshoots in the contact stage while keeping force error in the dynamic tracking stage, where traditional control algorithms  
are not competent. A percentage gain is adopted to map FO parameters to integer order (IO) parameters by their natural properties,  
and a fuzzy logical controller is introduced to improve the system stability. The simulation results indicate that the proposed controller  
can be made more stable than and superior to the general impedance controller, and the force tracking results also have been compared 
with the previous control methods.  
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1. INTRODUCTION 

With the development of robot technology, establishing the 
contact between the robot’s end-effector and the environment is 
becoming a vital part of tasks in robotic applications that involve 
assembly [1], precise handling or surface processing [e.g., polish-
ing] [2], exoskeleton [3] etc. The main issue in contact establish-
ment concerns the contact force magnitude that may take prohibit-
ing values, which may directly lead to the failure of a task, with 
even more serious consequences [manipulated object or manipu-
lator itself damaged] at the instant of contact. This force overshoot 
could be due to delays in measurement or communication, uncer-
tainties regarding the robot/environment model and discontinuities 
in controller input. To solve this knotty problem, some compliance 
control methods are proposed by researchers [4]. 

Hybrid position/force control and impedance control are two 
main compliance control approaches which can be distinguished 
by the relationship between positions and force, which are usually 
used to solve the contact problem. Hybrid position/force control is 
deter-mined based on formal models of the manipulator and task 
geometry to divide the task space into two separate subspecies: 
the position and the force subspaces as proposed by Robert [5, 
6]. Different control laws are responsible for position control in the 
free space and for force control along the directions in which 
position is constrained. The second strategy is an impedance 
control which describes the relation between force and position, 
first introduced by Hogan [7]. In this method, neither the position 
nor the force is used for control, but a generalised impedance 
equation, which defines the target impedance between the motion 
and the interaction force/torque, is utilised. In many cases, imped-
ance control outperformed the hybrid position/force control in 

terms of controlling the dynamic contact between manipulators 
and the environment, as well as showing more robustness in an 
unknown stiffness environment [8]. To cope with the need for 
more complex tasks in practical robotic applications, a variety of 
studies have combined the concept of the hybrid force/position 
control (intuitive and easy implementation) and the impedance 
control (superior interactivity) scheme to form the hybrid imped-
ance control [9-11]. Furthermore, due to the various uncertainties 
in the robot manipulator and the environment, adaptive hybrid 
impedance control was required to be a new stable force tracking 
impedance control scheme, capable of both tracking a desired 
force and of compensating for uncertainties in environment loca-
tion and stiffness [12-14]. 

But at the same time, some advanced nonlinear control 
schemes are also applied to handle the uncertainties for complex 
tasks, such as robust impedance control [3], adaptive fuzzy con-
trol [15] and neural net-works control [16]. Moreover, to manage 
the application of industrial robots, the position-based impedance 
control was proposed, and the performance and stability were 
also analysed [17, 18]. Among these methods, fuzzy logic brings 
advanced and useful properties for the robust command of uncer-
tain dynamic systems, which are prone to appearing in practical 
industrial robot applications, since it allows to interpret and com-
bine several different actions of control by means of linguistic 
rules and taking advantage of the user experience. These out-
standing properties of fuzzy control systems have been consid-
ered for designing robust controllers and precise motion planning 
schemes in the case of robotic plants [19, 20].  

In addition to using integer order (IO) system models and 
methods to control robots, some researchers have also turned 
their eyes to other nonlinear control strategies – namely fractional 
order (FO) tools – due to the virtue of their inherent properties of 
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memory and heritage. From here, the impedance controller has IO 
and FO control distinction. The FO controller is widely used to 
enhance the closed-loop performance by improving trajectory 
tacking and transient and steady-state responses, and it guaran-
tees the better control performance for both IO and FO systems 
[21]. Hence, the FO controller has been widely combined with 
advanced control techniques such as Proportion Integral Differen-
tial (PID) control, optimal control, adaptive control, (Sliding Mode 
Control) SMC etc. [22-24]. It also has been demonstrated that the 
FO controller is compatible with useful techniques for the model-
ling and control of advanced complex systems [25, 26], such as 
industrial automation control [27] and robotic applications [28-31], 
but then the problem of calculating the FO needs to be tackled. 

Therefore, there are many methods proposed using the inte-
ger order approximation (IOA) to solve the FO derivative and 
integrator operators. However, it is quite difficult to determine the 
best among these methods due to the performance evaluation 
criteria having different emphases; examples for this phenomenon 
include the IOA effect, accuracy of the frequency response and 
accuracy of the time response applying only to certain situations. 
In the frequency domain, Oustaloup presents an approximation 
method based on the recursive distribution of poles and zeros in a 
limited frequency range to obtain an IO transfer function by using 
frequency response fitting [32], which is by far the most common 
method. Either way, it is still complex, and a reasonable balance 
needs to be struck between the practicality of robotic industrial 
applications and their calculation complexity. Fuzzy logic and FO 
techniques have been considered together for out-standing con-
trol applications, the aim being to improve the performance of 
classical schemes [33].  

The above control schemes usually only consider one aspect 
of the force control problem; in actual robot applications, it is a 
very intractable problem to both maintain accurate force tracking 
and refrain from damaging the operating objects. Satisfying three 
indicators of force control: (1) maintaining force tracking error; (2) 
avoiding force overshoots; and (3) achieving fast response is still 
an open problem. Few researchers have considered all the indica-
tors together, most confining themselves to only one aspect. 

1.1. Contribution  

In view of this, the contribution of this paper lies in the valida-
tion of the proposed controller, which uses fuzzy logic, FO tools 
and adaptive control to form a fuzzy FO adaptive impedance 
control (Fuzzy-FO-AIC) for dynamic force contact control in uncer-
tain environments. The main goal of such a controller is to avoid 
the force overshoots in the contact stage while keeping force error 
in the dynamic tracking stage, where traditional control algorithms 
are not competent. The control scheme does not rely on the FO 
calculus; thus, a percentage control is adopted to convert it to IO 
calculations using its natural properties. This approximation meth-
od is simpler and more efficient than other IOA methods for robot 
compliance control problems. More-over, the Fuzzy-FO-AIC is 
presented here mainly in order to cater to a time-varying environ-
ment by adjusting the general impedance controller parameters 
using a fuzzy controller to achieve a dynamic update rate; its 
adaptability to time-varying dynamic environments is far superior 
to traditional impedance control. The stability and robustness of 
Fuzzy-FO-AIC and its effect on force overshoot suppression and 
force tracking performance during contact interactions with linear 
and nonlinear uncertain environments are investigated and com-

pared to previous impedance controls. It is expected that it would 
have a very significant impact on the film precision processing 
field of industrial robotic applications. 

1.2. Outline 

The paper is structured as follows. Section ‘Preliminaries’ re-
views some preliminaries, control architecture and the problem. 
The Fuzzy-FO-AIC control scheme is proposed to solve the prob-
lem in Section ‘Control Architecture’. Section ‘Simulations’ pre-
sents the simulation results to verify the superiority of the pro-
posed control algorithm. Conclusions are presented in Section 
‘Conclusions’. 

2. PRELIMINARIES 

2.1. FO system 

FO calculus, a generalisation of well-known IO calculus,  
allows differentiation and integration of arbitrary orders. Calculat-
ing a FO derivative/integral (differ-integral) is not trivial. In multiple 
mathematically well-founded definitions, one needs to choose the 
appropriate definition based on the application area. Among them, 
the Grunwald-Letnikov definition is usually used for calculating the 
FO. The Grunwald-Letnikov definition for FO operation is given 
as: 

𝐷𝛼𝑦(𝑡) = limℎ→0
1

ℎ𝛼
∑ 𝐶𝑖

𝛼
𝑡−𝑎

ℎ
𝑖=0

𝑦(𝑡 − 𝑖ℎ)                        (1) 

where 𝛼 is the order, ℎ is the step size of the calculation, a is the 

window length and 𝐶𝑖
𝛼 can be calculated by following: 

C0
α = 1, Ci

α = Ci−1
α (1 −

α+1

i
) , i = 1,2, …                         (2) 

FO differ-integral is a linear operator, and it has a memory and 
relies on the whole history. In real-time implementation, it relies 
upon the short memory principle due to the forgetting factor. 
Therefore, the memory storage and calculation amount will be 
large, which will lead to some obstacles to practical application. 

2.2. Contact control problem 

For modelling the contact between robot and environment, we 
can consider one of the degrees of the robot system in which a 
mass interacts with a stiffness environment (Fig. 1). The contact 
procedure can be divided into three processes: (1) Free motion; 
(2) Instant contact; (3) Steady tracking. The corresponding contact 
force curves are shown in Fig. 1(b). It can be seen that a large 
force overshoot is produced in the collision stage. In the actual 
robotic application, if not controlled, too much oscillation and force 
overshoot will cause the system to be unstable and even worse 
consequences. 

In addition to the above requirements, a superior force control-
ler adapting to a variety of complex tasks should have the follow-
ing characteristics: (1) Maintaining a high accuracy position track-
ing capability in Free-space (basic capabilities of modern industri-
al robots); (2) High speed, stable, smooth contact with the colli-
sion stage; (3) High precision force tracking capability in Steady-
contact. In this study, the design of robot controller is mainly 
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aimed at the indicators of (2) and (3). As (1) is a basic capability of 
industrial robots and the impedance control strategy is built on (1), 
the following section gives a brief introduction. 

 

Fig. 1. Contact model of robot and environment 

2.3. Position controlled robot 

For position-based impedance control (also called admittance 
control in some researches) systems, hierarchical separation of 
position control and impedance control is a common structure 
nowadays (Fig. 2). The computed-torque method combined with a 
conventional proportional–differential (PD) controller can form a 
superior position controller, in which the actual end-effector’s 
position is equal to that commanded, with no tracking delay and 
error. Once such a position controller is available, the impedance 
controller can be built on it. 

 
Fig. 2. Generic position controller that is applied to a robot manipulator  
            (computed-torque + PD). PD, proportional–differential 

3. CONTROL ARCHITECTURE 

Fig. 3 shows the whole Fuzzy-FO-AIC control architecture. 
Firstly, the motion space and constraint space are planned ac-
cording to the robot’s task definition. The robot is required to move 

its own end-effector with a desired position 𝑃𝑑 , and interact with 

the environment. The generated interaction force 𝐹𝑒 between 
robot and environment is measured by a force sensor, which is 
attached to the end-effector of the robot. The force error between 
the desired force 𝐹𝑑  and the interaction force 𝐹𝑒 is then sent to 

the Fuzzy-FO-AIC to generate the corresponding position error e. 
Then, the robot’s servo motion controller transmits sufficient 
torque to its joints in order to closely achieve the reference posi-
tion. 

 
Fig. 3. Fuzzy FO adaptive hybrid impedance control architecture.  
            FO, fractional order 

3.1. Fractional order-adaptive impedance control (FO-AIC) 

3.1.1. FO-AIC design 

Inspired by the integer order adaptive impedance controller 
(IO-AIC) that is most commonly used in researches, the difference 
between FO controller and IO controller is that the 2-order term in 
IO-AIC is not an integer but a decimal. Hereby, FO-AIC is defined 
as: 

𝑌(𝑠) =
1

𝑍𝐹𝑂−𝐴𝐼𝐶(𝑠)
=

1

𝑚𝑑𝑠𝛼+𝑏𝑑(𝑠+𝜌(𝑠))
          (3) 

𝜌(𝑠) = −
𝜎

𝑏
𝑒𝑓(𝑠)                  (4) 

The range of α is defined as 1 < 𝛼 < 2. Here, 𝑚𝑑 and 𝑏𝑑  
are the desired parameters of impedance controller. Eq. (4) de-

fines the adaptive compensation law; 𝜌 is the damping compen-
sation which is adjusted according to the force sensor information 
online. From an extreme point of view, for 𝛼 = 1, the controller 
acts like a pure damper due to the order being reduced to 1-order. 

On the other hand, when the integration order is at 𝛼 = 2, it 
becomes IO-AIC. Therefore, the effective mass and damping 
supplied by FO-AIC changes depending on the integration or-

der α, while disruptive effects are present throughout the range. 
An important nature property of FO is, as α is decreased gradual-
ly from 2 to 1, the inertial energy storage characteristics of decay 
and energy dissipation characteristics dominate. To demonstrate 
the effect of α on the dynamical response of the FO-AIC, consid-
ering the frequency domain expression using the Euler transform, 
we obtain: 

𝑍 = 𝑚𝑑𝜔𝛼 𝑐𝑜𝑠 (
𝛼𝜋

2
) + 𝑏𝑑(𝑗𝜔 + 𝜌(𝑗𝜔)) + 𝑗𝑚𝑑𝜔𝛼 𝑠𝑖𝑛 (

𝛼𝜋

2
)

              (5) 

In Eq. (5), the effective mass and damping provided by FO-

AIC are 𝑚𝑑𝜔𝛼 𝑠𝑖𝑛(𝛼𝜋/2) and 𝑚𝑑𝜔𝛼 𝑐𝑜𝑠(𝛼𝜋 /2) +

𝑏𝑑(𝑗𝜔 + 𝜌(𝑗𝜔)), respectively, whereas these values are con-

stant as 𝑚𝑑 and 𝑏𝑑  for IO-AIC. Hence, unlike in the IO case, the 
effective damping in FO-AIC is frequency-dependent and can be 

adjusted by altering the integration order 𝛼. This property of FO-
AIC is of interest for robot force control tasks, as it can improve 
stability robustness of interactions in tasks involving contacts with 
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environment, as can be seen in Fig. 4. From the point of view of 
controllability, compared with IO-AIC, one more adjustable pa-
rameter can ensure the system stability using FO-AIC. 

 
Fig. 4. Bode diagram analysis of FO-AIC and IO-AIC. FO-AIC, fractional  
            order-adaptive impedance control; IO-AIC, integer order adaptive  
            impedance controller 

3.1.2. FO-AIC with IOA 

From the natural property analysis of FO-AIC, we ascertain 
that the effective mass and damping are frequency-dependent, 
and can be adjusted by varying the integration order 𝛼. Based on 
this property, a natural idea was born – when taking two limits  

of FO, the FO-AIC becomes IO-AIC (𝛼 = 2) and a pure damper 
controller (𝛼 = 1), respectively. Hence, the new approximation 

controller can be formed by moving α from the order to the coeffi-

cient 𝛽 (𝛽 = 𝛼 − 1). The coefficient 𝛽 (0 < 𝛽 < 1) connects 
the two IO controllers (IO-AIC and a pure damper) by controlling 

percentages of the output, which does the same thing as 𝛼: 

𝑌(𝑠) =
1

𝑍𝐹𝑂−𝐴𝐼𝐶(𝑠)
=

𝛽

𝑚𝑑𝑠2+𝑏𝑑(𝑠+𝜌(𝑠))
+

(1−𝛽)

𝑏𝑑(𝑠+𝜌(𝑠))
          (6) 

 
Fig. 5. IOA Effects of FO-AIC. FO-AIC, fractional order-adaptive 
            impedance control; IOA, integer order approximation 

From Eq. (3), it can be found that β is directly related to the 
mass and damping effect that the controller wants to present. 
Similar to contact tasks, it can improve stability and robustness by 

decreasing β in the collision stage (presents its damping charac-
teristics) and increasing β in the steady force tracking stage (pre-
sents its compensation characteristics), when the robot contacts 
the environment. 

Fig. 5 shows the IOA effects of FO-AIC. It can be seen that 
there is a certain error in the contact stage between the FO-AIC 
(with Oustaloup method) and FO-AIC with IOA; due to the fact 
that FO has a memory and relies on the whole history, the 
memory effect is removed and replaced by a percentage in FO-
AIC with IOA. Nevertheless, considering the ease and analyzabil-
ity of use, this error can be ignored. This means the new IOA 
methods can be used in robot force control.  

3.2. Pre-PID regulator 

To achieve the force tracking response speed, a pre-PID 
regulator is designed before FO-AIC, each part forming a PID-like 
FO-AIC to improve the force tracking performance, which can be 
expressed as: 

(𝑘𝑝 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠) 𝑒𝑓(𝑠) =

𝑚𝑑𝑠2+𝑏𝑑(𝑠+𝜌(𝑠))

𝛽
+

𝑏𝑑(𝑠+𝜌(𝑠))

1−𝛽
        (7) 

where 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑  are the positive gains of the pre-PID. Mark-

ing 𝛾 = 𝑘𝑝 + 𝑘𝑖/𝑠 + 𝑘𝑑𝑠, we obtain: 

𝑒𝑓(𝑠) =
𝑚𝑑

𝛾𝛽
𝑠2 +

𝑏𝑑

𝛾𝛽(1−𝛽)
(𝑠 + 𝜌)                                         (8) 

Compared with the general FO-AIC, it could be found that the 
desired mass and damp coefficient of the PID-like FO-AIC chang-

es from 𝑚𝑑/𝛽 to md/γβ and bd/β(1 − β) to 𝑏𝑑/(𝛾𝛽 (1 −
𝛽)), respectively. It means that the pre-PID parameter γ selection 

and 𝛽 will affect the response speed and stability of the controller. 
To make this point clearer, we observe the response behavior of a 
second-order system by changing its parameters, as shown in 
Fig. 6. 

 
Fig. 6. Frequency response diagrams for decrease of inertia  
           and damping 

The selection of 𝛽 has a great impact on the response of the 
system due to fact that it relates to the nature property of the 
system. Here, if we were to keep the coefficient 𝛽 a constant 
value, and the impedance parameters are decreased simultane-
ously, then both the resonance amplitude and the resonant fre-
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quency are increased. This indicates that if the pre-PID parame-
ters are chosen reasonably, it can achieve a better expectation 
than the general controller, so that the contact force generated at 
the end-effector can quickly converge to the desired value. 

3.3. Fuzzy logic design 

It can be seen from Eq. (8) that the response of the FO-AIC 
is related not only to coefficient 𝛽 and the pre-PID regulator γ but 

also to the compensation rate 𝜌. It is assumed that the position 
controller for the industrial robot has a high-bandwidth servo loop, 
and the model uncertainties (inertia, friction and Coriolis etc.) and 
some external disturbances can be suppressed by PD control. 
Therefore, the block for the primary position controller with robot-

link dynamics in Fig. 2 is dropped; thus, 𝑃𝑑 ≅ 𝑃. Hence, the robot 
motion controller can be simplified to gain 1. The force sensor can 
be reduced to a linear stiffness environmental model. The whole 
of the robot control strategy is simplified in Fig. 7. 

 
Fig. 7. The transfer function of the simple interaction model 

The complete pre-PID, such as FO-AIC with IO approxima-
tion and the new design adaptive compensation rate in the time 
domain, can be represented as: 

𝑒𝑓(𝑡) =
𝑚𝑑

𝛾𝛽
�̈̂�(𝑡) +

𝑏𝑑

𝛾𝛽(1−𝛽)
(�̇̂�(𝑡) + 𝜌(𝑡))                         (9) 

𝜌(𝑡) = 𝜌(𝑡 − 𝑇) + 𝜎𝛾𝛽(1 − 𝛽)
(𝑓𝑑(𝑡−𝑇)−𝑓𝑒(𝑡−𝑇))

𝑏𝑑
        (10) 

Given that p̂e = pe − δpe is the estimation of the environ-
ment location, the estimation position error can then be expressed 
as �̂� = 𝑒 + 𝛿𝑝𝑒. γ is the pre-PID regulator, and since we’re just 

taking the proportional part here, 𝛾 = 𝑘𝑝 is equal to a constant. 

The initial conditions are given by 𝜌(0) = 0, and 𝑇 is the sam-

pling period (usually smaller is better). The update rate 𝜎 selec-
tion is associated with system stability and performance, which 
has been analysed in the forthcoming section, and it is used for 
designing the fuzzy logic controller. 

3.3.1. Transient and steady-state analysis 

According to the principle of dispersion, rewriting Eq. (10) and 

marking 𝑐(𝑡) = −𝑒𝑓 = 𝑓𝑑(𝑡) − 𝑓𝑒(𝑡), n elements of the ρ se-

ries can be expanded as: 

  
𝑏𝑑

𝛾𝛽(1−𝛽)
𝜌(𝑡) =

𝑏𝑑

𝛾𝛽(1−𝛽)
𝜌(𝑡 − 𝑛𝑇) + 𝜎𝑐(𝑡 − 𝑛𝑇) + ⋯ +

𝜎𝑐(𝑡 − 𝑇)             (11) 

Substituting Eq. (11) into Eq. (9) yields: 

𝑒𝑓(𝑡) =
𝑚𝑑

𝛾𝛽
�̈̂�(𝑡) +

𝑏𝑑

𝛾𝛽(1−𝛽)
�̇̂�(𝑡) + 𝜎(𝑐(𝑡 − 𝑛𝑇) + ⋯ +

𝑐(𝑡 − 𝑇))             (12) 

Taking the Laplace transform of Eq. (12), 

𝐸𝑓(𝑠) = (
𝑚𝑑

𝛾𝛽
𝑠2 +

𝑏𝑑

𝛾𝛽(1−𝛽)
𝑠)�̂�(𝑠) + 𝜎(𝑒−𝑛𝑇𝑠 + ⋯ +

𝑒−𝑇𝑠)(−𝐸𝑓(𝑠))             (13) 

where the sampling rate 𝑇 is sufficient and 𝑛 is a sufficiently large 
number. It is reasonable to assume that 

 ∑ 𝑒−𝑛𝑇𝑠 ≅ (1 − 𝑇𝑠)/𝑇𝑠∞
𝑛=1 .  

The steady transfer function can be rewritten as: 

𝐺(𝑠) =
�̂�(𝑠)

𝐸𝑓(𝑠)
=

(𝛾𝛽(1−𝛽)(1−𝜎)𝑇𝑠+𝛾𝛽(1−𝛽)𝜎

𝑚𝑑(1−𝛽)𝑇𝑠3+𝑏𝑑𝑇𝑠2           (14) 

The force error transfer function 𝛷(𝑠) for the whole closed-
loop system is shown below: 

𝛷(𝑠) =
𝐸(𝑆)

𝑅(𝑠)
=

1

1 + 𝐺(𝑠)𝐻(𝑠)
 

=
𝑚𝑑(1−𝛽)𝑇𝑠3+𝑏𝑑𝑇𝑠2

𝑚𝑑(1−𝛽)𝑇𝑠3+𝑏𝑑𝑇𝑠2+(𝛾𝛽(1−𝛽)(1−𝜎)𝑘𝑒𝑇𝑠+𝛾𝛽(1−𝛽)𝜎
       (15) 

Consider a complex dynamic environmental situation: a sine 

signal 𝑟 (𝑡)  = 𝑠𝑖𝑛𝜔𝑡. Long division method is used to compute 
dynamic error of FO-AIC (taking the first three terms): 

𝑒𝑠𝑠(𝑡) = 𝛷(0)𝑟(𝑡) + �̇�(0)�̇�(𝑡) + (
1

2!
) �̈�(0)�̈�(𝑡) + ⋯ =

−𝜔2 2𝑏𝑇

𝛾𝛽(1−𝛽)𝑘𝑒
2𝜎

𝑠𝑖𝑛𝜔𝑡 + ⋯                           (16) 

It can be seen that, for a complex environment, the tracking 

error can be decreased by increasing the update rate 𝜎. 
For transient response analysis, since the collision time is 

short, n is no longer being an infinite amount. Hence, rewriting the 
compensation part of Eq. (10) and dividing both sides by the 
sampling time, we obtain: 

𝜌(𝑡)−𝜌(𝑡−𝑇)

𝑇
=

𝜎𝛾𝛽(1−𝛽)

𝑏𝑑
( 

𝑓𝑑(𝑡−𝑇)−𝑓𝑒(𝑡−𝑇)

𝑇
 )        (17) 

In an extremely small period, it can be approximated 
that c(𝑡 − 𝑇) ≅ 𝑐(𝑡) = −𝑒𝑓 . The function representation be-

tween 𝜌 (𝑡) and 𝑐 (𝑡) can be written as follows: 

𝜌(𝑡) = −
𝜎𝛾𝛽(1−𝛽)

𝑏𝑑
𝑒𝑓(𝑡)          (18) 

Substituting Eq. (18) into Eq. (9) and then performing a La-
place transformation, the transient response transfer function of 
the impedance controller is obtained as the following: 

𝐺(𝑠) =
�̂�(𝑠)

𝐸𝑓(𝑠)
=

𝛾𝛽(1−𝛽)(1+𝜎)

(1−𝛽)𝑚𝑠2+𝑏𝑠
         (19) 

The transient response transfer function Ψ (s) for the whole 
closed-loop system is: 

𝛹(𝑠) =
𝐺(𝑠)𝐻(𝑠)

1+𝐺(𝑠)𝐻(𝑠)
=

𝛾𝛽(1−𝛽)(1+𝜎)𝑘𝑒

(1−𝛽)𝑚𝑠2+𝑏𝑠+𝛾𝛽(1−𝛽)(1+𝜎)𝑘𝑒
        (20) 

The damping coefficient ζ about the oscillation form of the 
system can be calculated from Eq. (20) as: 

ζ =
𝑏

2(1−𝛽)√𝑚𝛾𝛽(1+𝜎)𝑘𝑒
                        (21) 

In Eq. (21), it can be clearly seen that the system will present 

oscillation when σ increases, which indicates that the smaller σ 
having a better force overshoots the suppression effect.  

Combining the transient response and steady-state tracking 

analysis, in general, keeping the σ unchanged is an inadvisable 
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choice. Therefore, a dynamic adaptive update rate based on fuzzy 
logic coupling into FO-AIC is introduced in the forthcoming sec-
tion.  

3.3.2. Fuzzy logic controller 

Supposing [−𝑋𝑒𝑓 , 𝑋𝑒𝑓], [−𝑋𝑒�̇� , 𝑋𝑒�̇�] and [−𝑌𝜎 , 𝑌𝜎] are the 

basic domains of ef, ėf and σ, respectively, in this study, we set 
number 10 as the boundary for simplify. Based on the comparison 
between the effects of different types of membership functions on 
fuzzy controller performance, seven triangular type membership 
functions are chosen to demonstrate input and output of the pro-
posed controller, as illustrated in Fig. 8. Seven linguistic values 
are described, namely positive big (PB), positive medium (PM), 
positive small (PS), zero (ZO), negative big (NB), negative medi-
um (NM) and negative small (NS). The triangular membership 
function is used here mainly considering the computation speed. 
Similarly, the membership functions of the selected input and 
output are kept the same for the sake of calculation. 

The fuzzy control rules generalise the relationships between 
the inputs and outputs. They are established based on the experi-
ences and intuitions of the skilled workers. Both the error ef and 

the error ratio ėf have seven fuzzy subsets. Therefore, 49 fuzzy 
rules can be obtained according to the expertise, which are shown 
as Tab. 1. 

 
Fig. 8. Membership function of 𝑒𝑓, �̇�𝑓  and 𝜎 

 
Fig. 9. Output curve-surface of fuzzy logic control 

Tab. 1 can be applied as: if 𝑒𝑓(𝑖) = 𝐴𝑗 and 𝑒�̇�(𝑖) = 𝐵𝑗 , 

then σ = 𝐶𝑗(𝑗 = 1, … ,49) and 𝐴𝑗 and 𝐵𝑗  are the fuzzy sets 

corresponding to 𝑒𝑓(𝑖) and 𝑒�̇�(𝑖) in the j-th fuzzy rule, respec-

tively. 𝐶𝑗  is the fuzzy outputs corresponding to 𝜎 in the 𝑗-th fuzzy 

logical rule. The output membership grades for different fuzzy sets 
are derived from the rule table using the Mamdani fuzzy reasoning 
method, as seen in Fig. 9. The centre of gravity defuzzification 

method is selected to defuzzify the output fuzzy set: 

𝜎∗ =
∑ 𝐴𝑗(𝑒𝑓)𝐵𝑗(𝑒�̇�)𝜇𝑖

𝑛
𝑗=1

∑ 𝐴𝑗(𝑒𝑓)𝐵𝑗(𝑒�̇�)𝑛
𝑗=1

          (22) 

Tab. 1. Fuzzy Control Logic Rule Table 

 

 
   �̇�𝒇 

NB NM NS ZO PS PM PB 

 NB NB NB NM PM NM NB NB 

 NM NB NB NM PM NM NB NB 

 NS NM NM NS PS NS NM NM 

  𝐞𝒇 ZO NM ZO PM PB PM ZO NM 

 PS NM NM NS PS NS NM NM 

 PM NB NB NM PM NM NB NB 

 PB NB NB NM PM NM NB NB 

NB, negative big; NM, negative medium; NS, negative small; PB, positive 
big; PM, positive medium; PS, positive small; ZO, zero. 

In Tab. 1, 𝑛 is the fuzzy rule number, and 𝜇𝑗  is the member-

ship grade of the 𝑗-th fuzzy output, which takes values in [0, 1]. 
Suppose 𝑄𝜎  is the quantification factors of 𝜎 undergoing conver-

sion from the fuzzy domain to the basic domain, then 𝑄𝜎  can be 
given by: 

𝑄𝜎 =
𝐵𝜎

10
                  (23) 

Then, the precise values of σ can be denoted as: 

𝜎 = 𝑄𝜎𝜎∗            (24) 

3.3.3. Sigma boundary and stability 

To determine the σ boundary 𝐵𝜎 , a stability analysis is carried 
out in this section. Then, stability analysis is given according to 
the Routh criterion. 

Substituting Eq. (10) into Eq. (9) yields: 

𝑒𝑓(𝑡) =
𝑚𝑑

𝛾𝛽
�̈̂�(𝑡) +

𝑏𝑑

𝛾𝛽(1−𝛽)
�̇̂�(𝑡) +

𝑏𝑑

𝛾𝛽(1−𝛽)
𝜌(𝑡 − 𝑇) +

𝜎(𝑓𝑑(𝑡 − 𝑇) − 𝑓𝑒(𝑡 − 𝑇))          (25) 

Substituting the estimated position error �̂�(𝑡) = 𝑒(𝑡) +
𝛿𝑝𝑒(𝑡), Eq. (25) is rewritten as: 

𝑒𝑓(𝑡) =
𝑚𝑑

𝛾𝛽
[�̈�(𝑡) + 𝛿�̈�𝑒(𝑡)] +

𝑏𝑑

𝛾𝛽(1 − 𝛽)
[�̇�(𝑡) + 𝛿�̇�𝑒(𝑡)] 

+
𝑏𝑑

𝛾𝛽(1−𝛽)
𝜌(𝑡 − 𝑇) + 𝜎(𝑓𝑑(𝑡 − 𝑇) − 𝑓𝑒(𝑡 − 𝑇))       (26) 

Reorganising Eq. (26) yields: 

𝑚𝑑

𝛾𝛽
�̈�(𝑡) +

𝑏𝑑

𝛾𝛽(1 − 𝛽)
�̇�(𝑡) − 𝑒𝑓(𝑡) +

𝑏𝑑

𝛾𝛽(1 − 𝛽)
𝜌(𝑡 − 𝑇) 

+𝜎(𝑓𝑑(𝑡 − 𝑇) − 𝑓𝑒(𝑡 − 𝑇)) = −
𝑚𝑑

𝛾𝛽
𝛿�̈�𝑒(𝑡) −

𝑏𝑑

𝛾𝛽(1−𝛽)
𝛿�̇�𝑒(𝑡)            (27) 

According to the stiffness model between the robot and the 

environment, which is 𝑓𝑒 = 𝑘𝑒(𝑝𝑒 − 𝑝𝑑) = −𝑘𝑒𝑒, after the 
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differential it becomes: 

�̇� = −𝑓�̇�/𝑘𝑒  , �̈� = −𝑓�̈�/𝑘𝑒              (28) 

Substituting Eq. (28) into Eq. (27) yields: 

−
𝑚𝑑

𝛾𝛽
𝑓�̈�(𝑡) −

𝑏𝑑

𝛾𝛽(1 − 𝛽)
𝑓�̇�(𝑡) − 𝑘𝑒𝑒𝑓(𝑡) 

+
𝑏𝑑

𝛾𝛽(1 − 𝛽)
𝑘𝑒𝜌(𝑡 − 𝑇) + 𝜎𝑘𝑒(𝑓𝑑(𝑡 − 𝑇) − 𝑓𝑒(𝑡 − 𝑇) 

= −𝑘𝑒 (
𝑚𝑑

𝛾𝛽
𝛿�̈�𝑒(𝑡) +

𝑏𝑑

𝛾𝛽(1−𝛽)
𝛿�̇�𝑒(𝑡))                     (29) 

Let 𝑓𝑒(𝑡) = 𝑘𝑒𝛿𝑝𝑒(𝑡); then, adding the term 
𝑚𝑑

𝛾𝛽
𝑓�̈�(𝑡) +

𝑏𝑑

𝛾𝛽(1−𝛽)
𝑓�̇�(𝑡) at both sides, Eq. (29) could be represented as: 

 
𝑚𝑑

𝛾𝛽
(𝑓�̈�(𝑡) − 𝑓�̈�(𝑡)) +

𝑏𝑑

𝛾𝛽(1−𝛽)
(𝑓�̇�(𝑡) − 𝑓�̇�) − 𝑘𝑒𝑒𝑓(𝑡) +

𝑏𝑑

𝛾𝛽(1−𝛽)
𝑘𝑒𝜌(𝑡 − 𝑇) + 𝜎𝑘𝑒(𝑓𝑑(𝑡 − 𝑇) − 𝑓𝑒(𝑡 − 𝑇)) =

𝑚𝑑

𝛾𝛽
(𝑓�̈�(𝑡) − 𝑓̈

𝑒(𝑡)) +
𝑏𝑑

𝛾𝛽(1−𝛽)
(𝑓�̇�(𝑡) − 𝑓̇

𝑒(𝑡))       (30) 

Marking 𝑐(𝑡) = 𝑓𝑑(𝑡) − 𝑓𝑒(𝑡) and 𝑟(𝑡) = 𝑓𝑑(𝑡) − 𝑓𝑒(𝑡), 
Eq. (30) can be simplified as follows: 

𝑚𝑑

𝛾𝛽
�̈� +

𝑏𝑑

𝛾𝛽(1−𝛽)
�̇� +

𝑏𝑑

𝛾𝛽(1−𝛽)
𝑘𝑒𝜌(𝑡 − 𝑇) + 𝜎𝑘𝑒𝑐(𝑡 − 𝑇) +

𝑘𝑒𝑐 =
𝑚𝑑

𝛾𝛽
�̈� +

𝑏𝑑

𝛾𝛽(1−𝛽)
�̇�                                                     (31) 

Combining Eq. (11) and Eq. (31) yields: 

 
𝑚𝑑

𝛾𝛽
�̈� +

𝑏𝑑

𝛾𝛽(1−𝛽)
�̇� + 𝜎𝑘𝑒(𝑐(𝑡 − (𝑛 + 1)𝑇) + ⋯ +

𝑐(𝑡 − 𝑇)) + 𝑘𝑒𝑐 =  
𝑚𝑑

𝛾𝛽
�̈� +

𝑏𝑑

𝛾𝛽(1−𝛽)
�̇�        (32) 

Laplace transform of Eq. (32) is: 

  
𝑐(𝑠)

𝑟(𝑠)
=

(1−𝛽)𝑚𝑑𝑠2+𝑏𝑑𝑠

(1−𝛽)𝑚𝑑𝑠2+𝑏𝑑𝑠+𝑘𝑒𝛾𝛽(1−𝛽)

+𝜎𝑘𝑒𝛾𝛽(1−𝛽)(𝑒−(𝑛+1)𝑇𝑠+⋯+𝑒−𝑇𝑠)

         (33) 

The stability of Eq. (33) can be guaranteed by the characteris-
tic expressed as: 

  (1 − 𝛽)𝑚𝑑𝑠2 + 𝑏𝑑𝑠 + 𝑘𝑒𝛾𝛽(1 − 𝛽) + 𝜎𝑘𝑒(𝑒−(𝑛+1)𝑇𝑠 +

⋯ + 𝑒−𝑇𝑠) = 0          (34) 

Assuming that n is a sufficiently large number, and that the 

sampling rate 𝑇 is sufficient for ∑ 𝑒−𝑛𝑇𝑠 ≅ (1 − 𝑇𝑠)/𝑇𝑠∞
𝑛=1 , we 

substitute it into Eq. (34) to obtain: 

(1 − 𝛽)𝑚𝑑𝑇𝑠3 + 𝑏𝑑𝑇𝑠2 + 𝑘𝑒𝑇(𝛾𝛽(1 − 𝛽) − 𝜎)𝑠 + 
𝜎𝑘𝑒 = 0            (35) 

According to the Routh criterion, the Routh array is presented 
as:  

𝑠3    (1 − 𝛽)𝑚𝑑𝑇                  𝑘𝑒𝑇(𝛾𝛽(1 − 𝛽) − 𝜎) 

 𝑠2     𝑏𝑑𝑇                                𝜎𝑘𝑒 

 𝑠1    
𝑏𝑑𝑇2𝑘𝑒(𝛾𝛽(1−𝛽)−𝜎)−(1−𝛽)𝑚𝑑𝑇𝜎𝑘𝑒

𝑏𝑑𝑇
   0                              (36) 

 𝑠0     𝜎𝑘𝑒                          0                                  

To ensure the stability of the system, the coefficients of the 
first column and the coefficients of the characteristic equation 
must be positive, which is represented as: 

{

𝑏𝑑𝑇2(𝛾𝛽(1−𝛽)−𝜎)−(1−𝛽)𝑚𝑑𝑇𝜎𝑘𝑒

𝑏𝑑𝑇
 > 0

𝑘𝑒𝑇(𝛾𝛽(1 − 𝛽) − 𝜎) > 0
𝜎𝑘𝑒 > 0

         (37) 

Simplifying Eq. (37), the boundary of σ is: 

0 < 𝜎 <
𝑏𝑑𝑇𝛾𝛽(1−𝛽)

(1−𝛽)𝑚𝑑+𝑏𝑑𝑇
           (38) 

For a stable system, the steady-state error 𝑒𝑠𝑠 can be defined 
based on the Laplace transform. For convergence, the steady-
state error can be calculated as: 

𝑒𝑠𝑠 = 𝑙𝑖𝑚𝑠→0 𝑠𝐸(𝑠) =

𝑙𝑖𝑚𝑠→0 𝑠[
(1−𝛽)𝑚𝑑𝑇𝑠2+𝑏𝑑𝑇𝑠

(1−𝛽)𝑚𝑑𝑇𝑠3+𝑏𝑑𝑇𝑠2+𝑘𝑒𝑇(𝛾𝛽(1−𝛽)−𝜎)𝑠
+𝜎𝑘𝑒

− 1]𝑟(𝑠)       (39) 

When the input is a step function with the form as 𝑟 (𝑠)  =
1/𝑠, Eq. (39) yields a result as follows: 

𝑒𝑠𝑠 = 𝑙𝑖𝑚𝑠→0 𝑠(𝑐(𝑠) − 𝑟(𝑠)) = −1                       (40) 

The following conclusion can be reached from Eq. (40): 

𝑙𝑖𝑚𝑠→0 𝑠𝑐(𝑠) = 0 , 𝑙𝑖𝑚𝑡→∞ 𝑐(𝑡) = 0                       (41) 

Therefore, when 𝑡 → ∞, 𝑓𝑒 →  𝑓𝑑 . The contact force con-

verges to the desired force. Actually, even if 𝑟 (𝑠) is a slope  
or sine input as in simulations and experiments, the force tracking 
error tends to zero, and this also can be proven. 

3.4. Control effect analysis 

For position-based impedance control systems, hierarchical 
separation of position control and impedance control is a common 
structure nowadays. This means that the stability of the whole 
system can be divided into two subsystems: impedance control 
and position control. It is a reasonable assumption that the posi-
tion controller can achieve stable tracking in industrial robots. 
Therefore, we mainly study the stability of the impedance control 
part. The stability of the impedance control part is mainly com-
posed of the following parts: pre-PID regulator, fuzzy controller 
and FO-AIC. Similarly, the performance of the controller is related 
to these three parts, which can be seen in Tab. 2. (The table is 
obtained by simulation analysis, based on the selection variable 
method.) 

Tab. 2. The Control effect of pre-PID regulator, Fuzzy logic and FO-AIC 

Index 

Controller 

Force 
response 

(Tracking 
time) 

Force 
overshoot 

(Collision 
force) 

Force 
tracking 

(Tracking 
error) 

Pre-PID 𝑘𝑝(↑) High (↓) High (↑) Low (↓) 

Fuzzy 
logic 

𝜎(↑) Low (↓) High (↑) High (↓) 

FO-AIC 𝛼 𝑜𝑟 𝛽(↓) Low (↑) High (↓) Low (↑) 

FO-AIC, fractional order-adaptive impedance control. 

As can be seen from Tab. 2, each part has its own emphasis 
and strengths on the performance indicators of force control. The 
pre-PID can quickly improve the response speed and ensure the 
tracking accuracy, but at the same time will introduce a large 
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overshoot. FO tools can greatly reduce overshoot of force control, 

but it is insufficient in response time and tracking accuracy. The 𝜎 
can greatly affect the overshoot and tracking accuracy, and thus 
fuzzy logic is needed to determine dynamic adjustment based on 
the contact information. Therefore, in order to obtain a force con-
troller with fast response, small overshoot and high tracking accu-
racy, all three parts are indispensable. 

4. SIMULATIONS 

To verify the theoretical findings and controller performance,  
a series of simulation studies are conducted and presented in this 
section. To test the performance and adaptability of various strat-
egies in a dynamic continuous stiffness environment, the stiffness 
is designed as: 

𝑘𝑒 = 4000 + 800 𝑠𝑖𝑛 (
𝜋

2
𝑡)            (42) 

The motion process of the robot is as follows: first contacting 
the dynamic, uncertain surface to achieve a desired contact force, 
and then tracking the desired force. 

4.1. FO order impacts simulation 

 
Fig. 10. Performance comparison of FO-AIC and IO-AIC for (a) constant  
              force; (b) slope force; (c) sine force with dynamic stiffness. 
              FO-AIC, fractional order-adaptive impedance control;  
              IO-AIC, integer order adaptive impedance controller 

 

Fig. 10 shows the simulation results of FO-AIC and IO-AIC for 
a constant force, a slope force and a sine force, respectively. 
0~1s is the initial contact state, 1~5s are the tracking state. As can 
be seen in the contact stage, as the order decreases, the force 
overshoots also decrease, which indicates that the smaller the 
order, the smaller the collision force. Meanwhile, we can see that 
the force tracking has a slight improvement in the tracking stage, 
but not much. Therefore, the proposed FO-IC can greatly reduce 
force overshoots in the initial contact phase compared with IO-IC, 
and this effect has strong adaptability and robustness for various 
tasks. 

4.2. 1-DOF robot contact force tracking simulation 

The basic impedance parameters 𝑚𝑑 = 1 𝑁𝑠2/𝑚 and 
𝑏𝑑 = 44 𝑁𝑠/𝑚 are selected based on experiences (here refer-
ring to the benchmark). Modelling uncertainty is introduced  
in simulation implementations by considering the estimated mass 
�̂�𝑟 = 0.8 𝑘𝑔 instead of the real mass 𝑚𝑟 = 1 𝑘𝑔. The position 
controller is designed with high gains to achieve good position 

tracking, which is common in practice. The unmoulded friction Ff 
is assumed to have a form, with 𝑐𝑣 = 1.2 𝑁𝑠/𝑚 and 𝐹𝑐 = 4 𝑁 
as the coefficients of viscous and coulomb friction: 

 𝐹𝑓 = −𝑠𝑖𝑔𝑛( �̇�)(𝑐𝑣 |�̇�| + 𝐹𝑐 )                                       (43) 

 
Fig. 11. Constant force control performance comparison of Fuzzy-FO- 
             AIC with other controllers. Fuzzy-FO-AIC, fuzzy FO adaptive  
             impedance control 

Figs. 11 and 12 show the force response, overshoots and 
tracking performance of the classical control methods (IO-IC [7], 



Hongli Cao                              DOI  10.2478/ama-2022-0003 
Design of a Fuzzy Fractional Order Adaptive Impedance Controller with Integer Order Approximation for Stable Robotic Contact Force Tracking in Uncertain Environment 

24 

IO-AIC [12]), Fuzzy-IO-AIC [19], contrast controller (FO-IC [30], 
FO-AIC [21]) and the proposed Fuzzy-FO-AIC control strategies in 
different scenarios. (The FOs are all replaced by the FO with 
IOA.) 

First, the transient response of the step and sine force are 
shown in Fig. 11 (a) and Fig. 12 (a) with a time range of 0-1 s, 
respectively. The contact force has a stronger vibration and force 
overshoots in IO-AIC at the initial contact stage, followed by 
Fuzzy-IO-AIC, IO-AIC and FO-AIC. However, both FO-IC and 
Fuzzy-FO-AIC have a superior force overshoots suppression 
ability. Lateral results’ comparison show that FO tools have better 
vibration suppression than IO due to their natural damping effect. 
Longitudinal results’ comparison shows that a smaller σ has a 
smaller force overshoot. Taken together, the Fuzzy-FO-AIC actu-
ally achieve the double damping effect, which indicates that this 
approach has the best force overshoots suppression ability. 

 
Fig. 12. Varying force control performance comparison of Fuzzy-FO-AIC  
              with other controllers. Fuzzy-FO-AIC, fuzzy FO adaptive  
              impedance control 

Then, the corresponding steady force tracking performance is 
highlighted in Fig. 11(b) and Fig. 12(b) with a time ranging from 
1 s to 5 s. Unlike the vibration collision phase, IO-IC and FO-IC 
have the worst tracking effect of all. IO-AIC, FO-AIC and their 
adaptive versions Fuzzy-IO-AIC, Fuzzy-FO-AIC have the best 

tracking effects since all their σ ups to the upper bound. There-
fore, it can be concluded that the force tracking accuracy of either 

FO or IO depends only on the value of 𝜎, the larger σ and the 
higher precision. In theory, the Fuzzy-IO-AIC and Fuzzy-FO-AIC 
controllers all can achieve more accurate force tracking effects 

owing to the fact that the σ boundary can be enlarged by the pre-
PID regulator. 

 

 
Fig. 13. 6-DOF robot force control grinding simulation 

From the simulation results and analysis, we observe that in-

troducing fuzzy adaptive 𝜎 can effectively balance the impact 
force and tracking requirements. Meanwhile, FO is used to further 
enhance control system stability. Hence, the Fuzzy-IO-AIC control 
strategy is the best choice of all to achieve a superior force con-
troller, namely one with the characteristics of high force tracking 
and no overshoots. 

4.3. 6-DOF robot dynamic contact simulation 

The Fuzzy-FO-AIC is arranged in the form of a 6-DOF robot 
(PUMA560) for the polishing simulation study, with force control in 
the x-direction of the motion constraint, and motion control in the 
remaining directions, as indicated in Fig. 13(a). Basic cartesian 

impedance parameters are set: md = 30 Ns2/m and bd =
120 Ns/m; and the approximation coefficient of FO is β = 0.7. 
The robot is controlled by inverse dynamics plus joint servo for 
motion tracking, with PD parameters kp = 1e3 and 𝑘𝑑 =
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35.The sampling period is 4 ms. 
Fig. 13(b) shows the IO-IC, IO-AIC, Fuzzy-IO-AIC and Fuzzy-

FO-AIC in the contact phase. It can be seen that IO-AIC also 
exhibits a large overshoot behaviour, and as the update rate 
decreases, the vibration overshoot has a great reduction in IO-IC 
and Fuzzy-IO-AIC, but does not disappear completely. In contrast, 
there is almost no overshoot in Fuzzy-FO-AIC. As can be seen 
from the steady-state tracking phase in Fig. 13(c), the IO-IC track-
ing accuracy is poor at about 10.5%, while the IO-AIC, Fuzzy-IO-
AIC and Fuzzy-FO-AIC tracking accuracy improves at about 7%. 
The Fuzzy-FO-AIC demonstrates a transient and steady-state 
control performance that is much better than the current common-
ly used impedance control strategies. Essentially, fractional-order 
impedance can further improve the tracking accuracy to a certain 
extent by appropriately increasing the update rate due to its better 
stability. 

5. CONCLUSIONS 

The significance of the robot contact operation has been 
growing recently due to the introduction of interactive robots. 
Maintaining the high speed, stable, smooth contact and high 
precision force tracking indicators are some of the highly challeng-
ing aspects involved in force controller design. Additionally, these 
demands are among the most common issues in real robot appli-
cation. 

In this paper, the Fuzzy-FO-AIC is proposed to manage dy-
namic contact force tracking in an uncertain environment (e.g., 
polishing tasks). The need to adjust the dynamic update rate and 
maintain the superiority of FO control are highlighted. A fuzzy 
logic controller inferring the update rate on-line is applied and the 
stability and boundary are analysed. Meanwhile, an IO approxi-
mate method using percentage to simplify fractional control is also 
provided and verified through simulation. The simulation results all 
show that Fuzzy-FO-AIC can improve the dynamic force tracking 
performance, significantly in an uncertain environment, better than 
other previous controllers. In particular, FO control enables more 
effective control and provides more flexibility to adjust stability 
than IO, making it well suited for robotic applications involving 
force control. Furthermore, the reported methodology can be 
expanded to force control in other tasks where an unknown envi-
ronment is easily distorted or manufacturing requires force control 
based on industrial robots. 
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