PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating Optimal Cultivation Sites for Microalgae Based on Dairy Farm Wastewater using Analytical Hierarchy Process and Geographic Information System Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dairy farm wastewater contains high BOD, COD, and TSS, thus harming the environment if discharged without proper treatment. However, it is rich in nutrients, primarily nitrogen and phosphorus, which are needed by microalgae to grow and synthesis useful and high-value organic compounds. Microalgae biomass can be generated from a cultivation system that is integrated with wastewater sources efficiently. Selecting a suitable location is thereby crucial for the sustainable development of microalgae cultivation. This study aimed to select suitable locations in Cangkringan District, Indonesia for microalgae cultivation sites using the analytical hierarchy process (AHP) method integrated with geographic information system (GIS) and weighted overlay analysis (WOA). AHP helped determine the relative weights of the relevant factors, including dairy farm wastewater, temperature, land use, land elevation, and land slope in the study area. These weights were subsequently applied in WOA to determine locations that were most suitable for microalgae cultivation sites. The results of WOA, presented in the form of a land suitability map, showed that 0.1% (0.04 km2 ) of the studied areas is highly suitable for the development of microalgae cultivation and that a significant portion, approximately 67.2% (29.75 km2 ), is not suitable.
Słowa kluczowe
Twórcy
autor
  • Doctoral Program of Environmental Science, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Department of Energy Systems Engineering Faculty of Industrial Technology and Energy, Institut Teknologi Yogyakarta, Yogyakarta, Indonesia
  • Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
Bibliografia
  • 1. Amiri, R., Ahmadi, M. 2020. Treatment of wastewater in sewer by Spirogyra sp. green algae: effects of light and carbon sources. Water and Environment Journal, 34(3), 311–321. https://doi.org/10.1111/wej.12463
  • 2. Ariff, H., Salit, M.S., Ismail, N., Nukman, Y. 2012. Use of analytical hierarchy process (AHP) for selecting the best design concept. Jurnal Teknologi, 49(A), 1–18. https://doi.org/10.11113/jt.v49.188
  • 3. Arsalan, S., Iqbal, M.J. 2023. Evaluating optimal cultivation sites for microalgae as a sustainable biofuel energy resource. Environmental Research Communications, 5(10). https://doi.org/10.1088/2515-7620/ad0027
  • 4. Avdullahi, S., Hajra, A. 2023. Identification of groundwater potential zones using remote sensing, geographical information system, and analytic hierarchy process techniques – A case study in the Nerodime Watershed, Kosovo. Ecological Engineering and Environmental Technology, 24(4), 147– 161. https://doi.org/10.12912/27197050/161887
  • 5. Bhatt, A., Khanchandani, M., Rana, M.S., Prajapati, S.K. 2022. Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. Journal of Cleaner Production, 370(July), 133456. https://doi.org/10.1016/j.jclepro.2022.133456
  • 6. Boruff, B.J., Moheimani, N.R., Borowitzka, M.A. 2015. Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach. Applied Energy, 149, 379–391. https://doi.org/10.1016/j.apenergy.2015.03.089
  • 7. Bravo-Fritz, C.P., Sáez-Navarrete, C.A., Herrera Zeppelin, L.A., Ginocchio Cea, R. 2015. Site selection for microalgae farming on an industrial scale in Chile. Algal Research, 11, 343–349. https://doi.org/10.1016/j.algal.2015.07.012
  • 8. Brusca, S., Famoso, F., Lanzafame, R., Messina, M., Wilson, J. 2017. A site selection model to identify optimal locations for microalgae biofuel production facilities in sicily (Italy). International Journal of Applied Engineering Research, 12(24), 16058–16067.
  • 9. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  • 10. Chiu, Y.W., Wu, M. 2013. Considering water availability and wastewater resources in the development of algal bio-oil. Biofuels, Bioproducts and Biorefining, 7(4), 406–415. https://doi.org/10.1002/bbb.1397
  • 11. Chukwuma, E.C., Okey-Onyesolu, F.C., Ani, K.A., Nwanna, E.C. 2021. Gis bio-waste assessment and suitability analysis for biogas power plant: A case study of Anambra state of Nigeria. Renewable Energy, 163, 1182–1194. https://doi.org/10.1016/j.renene.2020.09.046
  • 12. Citra Permata Kusuma Anggraini, R., Sasongko, N.A., Kuntjoro, Y.D. 2018. Preliminary study on the Location selection of microalgae cultivation in Nusa Tenggara Region as a potential feedstock for bioavtur. E3S Web of Conferences, 31, 1–5. https://doi.org/10.1051/e3sconf/20183102013
  • 13. Cui, H., Ma, H., Chen, S., Yu, J., Xu, W., Zhu, X., Gujar, A., Ji, C., Xue, J., Zhang, C., Li, R. 2020. Mitigating excessive ammonia nitrogen in chicken farm flushing wastewater by mixing strategy for nutrient removal and lipid accumulation in the green alga Chlorella sorokiniana. Bioresource Technology, 303(January), 122940. https://doi.org/10.1016/j.biortech.2020.122940
  • 14. Dalgleish, P. 2017. Sustainability research project: Research of suitable locations, design and operation of microalgae production plants for biofuel’s. Natural Resources, 08(11), 671–708. https://doi.org/10.4236/nr.2017.811043
  • 15. Daneshvar, E., Zarrinmehr, M.J., Koutra, E., Kornaros, M., Farhadian, O., Bhatnagar, A. 2019. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Bioresource Technology, 273(October 2018), 556– 564. https://doi.org/10.1016/j.biortech.2018.11.059
  • 16. Ding, J., Zhao, F., Cao, Y., Xing, L., Liu, W., Mei, S., Li, S. 2015. Cultivation of microalgae in dairy farm wastewater without sterilization. International Journal of Phytoremediation, 17(3), 222–227. https://doi.org/10.1080/15226514.2013.876970
  • 17. Effat, H.A., Hassan, O.A. 2013. Designing and evaluation of three alternatives highway routes using the Analytical Hierarchy Process and the least-cost path analysis, application in Sinai Peninsula, Egypt. Egyptian Journal of Remote Sensing and Space Science, 16(2), 141–151. https://doi.org/10.1016/j.ejrs.2013.08.001
  • 18. El-Haji, S., Houzi, G., Kaioua, S., Abdelaziz, C. 2023. Green microalgae as a food source – Growth kinetics and biochemical composition. Ecological Engineering and Environmental Technology, 24(7), 154–160. https://doi.org/10.12912/27197050/168507
  • 19. Elaalem, M., Comber, A., Fisher, P. 2011. A comparison of fuzzy AHP and ideal point methods for evaluating land suitability. Transactions in GIS, 15(3), 329–346. https://doi.org/10.1111/j.1467-9671.2011.01260.x
  • 20. Elshobary, M.E., Zabed, H.M., Qi, X., El-Shenody, R.A. 2022. Enhancing biomass and lipid productivity of a green microalga Parachlorella kessleri for biodiesel production using rapid mutation of atmospheric and room temperature plasma. Biotechnology for Biofuels and Bioproducts, 15(1), 1–17. https://doi.org/10.1186/s13068-022-02220-z
  • 21. Feizizadeh, B., Jankowski, P., Blaschke, T. 2014. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Computers and Geosciences, 64, 81–95. https://doi.org/10.1016/j.cageo.2013.11.009
  • 22. Ferliandi, F., Budiman, A., Suyono, E.A., Dewayanto, N. 2022. Application of analytic hierarchy process in the selection of botryococcus braunii cultivation technology for bio-crude oil production. Frontiers in Renewable Energy, 1(1), 23–30. https://doi.org/10.22146/free.v1i1.3838
  • 23. Fridrich, B., Krčmar, D., Dalmacija, B., Molnar, J., Pešić, V., Kragulj, M., Varga, N. 2014. Impact of wastewater from pig farm lagoons on the quality of local groundwater. Agricultural Water Management, 135, 40–53. https://doi.org/10.1016/j.agwat.2013.12.014
  • 24. Habibah, E., Suyono, E.A., Koerniawan, M.D., Suwanti, L.T., Siregar, U.J., Budiman, A. 2022. Potential of natural sunlight for microalgae cultivation in Yogyakarta. IOP Conference Series: Earth and Environmental Science, 963(1), 1–6. https://doi.org/10.1088/1755-1315/963/1/012041
  • 25. Hanene, C., Chemirik, K., Baahmed, D., Nedjai, R., Boudjemline, D., Mahcer, I. 2024. Mapping groundwater potential zones with GIS-RS-AHP under climate change – Case of mostaganem plateau, northwest Algeria. Ecological Engineering & Environmental Technology (EEET), 25(6), 72–89.
  • 26. Hawke, R.M., Summers, S.A. 2006. Effects of land application of farm dairy effluent on soil properties: A literature review. New Zealand Journal of Agricultural Research, 49(3), 307–320. https://doi.org/10.1080/00288233.2006.9513721
  • 27. Hazini, S., Hashim, M., Rokni, K., Shafaghat, A. 2015. Identifying the optimum locations for food industries in Qaemshahr. Jurnal Teknologi, 4, 153–158.
  • 28. Hena, S., Fatihah, N., Tabassum, S., Ismail, N. 2015. Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement. Water Research, 80, 346–356. https://doi.org/10.1016/j.watres.2015.05.001
  • 29. Hena, S., Znad, H., Heong, K.T., Judd, S. 2018. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Research, 128, 267– 277. https://doi.org/10.1016/j.watres.2017.10.057
  • 30. Hossain, N., Hasan, M.H., Mahlia, T.M.I., Shamsuddin, A.H., Silitonga, A.S. 2020. Feasibility of microalgae as feedstock for alternative fuel in Malaysia: A review. Energy Strategy Reviews, 32, 100536. https://doi.org/10.1016/j.esr.2020.100536
  • 31. Ismail, A.L., Lahcen, K., Badre, M., Badre, E., Mohamed, E.O., Lamya, O., Jean, A., Meryem, E.A., Amina, K., Essahlaoui, A. 2024. Mapping favorable groundwater potential recharge areas using a GISBased analytical hierarchical process – A case study of Ferkla Oasis, Morocco. Ecological Engineering and Environmental Technology, 25(3), 311–325. https://doi.org/10.12912/27197050/182842
  • 32. Jonker, J.G.G., Faaij, A.P.C. 2013. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Applied Energy, 102, 461–475. https://doi.org/10.1016/j.apenergy.2012.07.053
  • 33. Khahro, S.H., Matori, A.N., Chandio, I.A., Talpur, M.A.H. 2014. Land suitability analysis for installing new petrol filling stations using GIS. Procedia Engineering, 77, 28–36. https://doi.org/10.1016/j.proeng.2014.07.024
  • 34. Kiker, G.A., Bridges, T.S., Varghese, A., Seager, P.T.P., Linkov, I. 2005. Application of multicriteria decision analysis in environmental decision making. Integrated Environmental Assessment and Management, 1(2), 95–108. https://doi.org/10.1897/IEAM_2004a-015.1
  • 35. Klise, G., Roach, J., Passell, H. 2011. A study of algal biomass potential in selected canadian regions. November. http://prod.sandia.gov/techlib/accesscontrol.cgi/2011/118528.pdf
  • 36. Kuria, D., Ngari, D., Waithaka, E. 2011. Using geographic information systems (GIS) to determine land suitability for rice crop growing in the Tana delta. Journal of Geography and Regional Planning, 4(9), 525–532. http://www.academicjournals.org/JGRP
  • 37. Labbé, J.I., Ramos-Suárez, J.L., Hernández-Pérez, A., Baeza, A., Hansen, F. 2017. Microalgae growth in polluted effluents from the dairy industry for biomass production and phytoremediation. Journal of Environmental Chemical Engineering, 5(1), 635– 643. https://doi.org/10.1016/j.jece.2016.12.040
  • 38. Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629–636. https://doi.org/10.1007/s00253-008-1681-1
  • 39. Liyanaarachchi, V.C., Premaratne, M., Ariyadasa, T.U., Nimarshana, P.H.V., Malik, A. 2021. Twostage cultivation of microalgae for production of high-value compounds and biofuels: A review. Algal Research, 57(April), 102353. https://doi.org/10.1016/j.algal.2021.102353
  • 40. Lozano-Garcia, D.F., Cuellar-Bermudez, S.P., del Rio-Hinojosa, E., Betancourt, F., Aleman-Nava, G.S., Parra-Saldivar, R. 2019. Potential land microalgae cultivation in Mexico: From food production to biofuels. Algal Research, 39(February), 101459. https://doi.org/10.1016/j.algal.2019.101459
  • 41. Lundquist, T.J., Woertz, I.C., Quin, N.W.T., Benemann, J.R. 2010. A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute., October 2010, 1–153.
  • 42. Manoj, V., Rathnala, P., Sura, S.R., Sai, S.N., Murthy, M.V.R. 2022. Performance evaluation of hydro power projects in India using multi criteria decision making methods. Ecological Engineering and Environmental Technology, 23(5), 205–217. https://doi.org/10.12912/27197050/152130
  • 43. Maxwell, E.L., Folger, A.G., Hogg, S.E. 1985. Resource evaluation and site selection for microalgae production systems. Solar Energy Research Institute, May. http://www.nrel.gov/docs/legosti/old/2484.pdf
  • 44. Milbrandt, A., Jarvis, E. 2011. Resource evaluation and site selection for microalgae production in India. Exploring Renewable and Alternative Energy Use in India, September, 123–203.
  • 45. Mishra, A.K., Deep, S., Choudhary, A. 2015. Identification of suitable sites for organic farming using AHP & GIS. Egyptian Journal of Remote Sensing and Space Science, 18(2), 181–193. https://doi.org/10.1016/j.ejrs.2015.06.005
  • 46. Orfield, N.D., Keoleian, G.A., Love, N.G. 2014. A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization. Biomass and Bioenergy, 63, 76–85. https://doi.org/10.1016/j.biombioe.2014.01.047
  • 47. Pawar, S. 2016. Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renewable and Sustainable Energy Reviews, 62, 640–653. https://doi.org/10.1016/j.rser.2016.04.074
  • 48. Pramanik, M.K. 2016. Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Systems and Environment, 2(2), 1–22. https://doi.org/10.1007/s40808-016-0116-8
  • 49. Prasad, P., Pullar, D., Pratt, S. 2014. Facilitating access to the algal economy: Mapping waste resources to identify suitable locations for algal farms in Queensland. Resources, Conservation and Recycling, 86, 47–52. https://doi.org/10.1016/j.resconrec.2014.01.008
  • 50. Quinn, J.C., Catton, K.B., Johnson, S., Bradley, T.H. 2013. Geographical assessment of microalgae biofuels potential incorporating resource availability. Bioenergy Research, 6(2), 591–600. https://doi.org/10.1007/s12155-012-9277-0
  • 51. Quinn, J.C., Catton, K., Wagner, N., Bradley, T.H. 2012. Current large-scale US biofuel potential from microalgae cultivated in Photobioreactors. Bioenergy Research, 5(1), 49–60. https://doi.org/10.1007/s12155-011-9165-z
  • 52. Razak, M.F.A., Said, M.A.M., Yusoh, R. 2015. The development of a site suitability map for RBF location using remote sensing and GIS techniques. Jurnal Teknologi, 74(11), 15–21. https://doi.org/10.11113/jt.v74.4855
  • 53. Rivas Lucero, B.A., Gutiérrez, M., Eduardo Magaña Magaña, J., Salcido, F.M., Fierro, W.M. 2018. Salt content of dairy farm effluents as an indicator of salinization risk to soils. Soil Systems, 2(4), 1–9. https://doi.org/10.3390/soilsystems2040061
  • 54. Roostaei, J., Zhang, Y., Gopalakrishnan, K., Ochocki, A.J. 2018. Mixotrophic microalgae biofilm: A novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-31016-1
  • 55. Russell, C., Rodriguez, C., Yaseen, M. 2022. Microalgae for lipid production: Cultivation, extraction & detection. Algal Research, 66(July), 102765. https://doi.org/10.1016/j.algal.2022.102765
  • 56. Saaty, T.L. 2008. Decision making with the analytic hierarchy process. Journal Services Sciences, 1(1), 83–98. https://doi.org/10.1108/JMTM-03-2014-0020
  • 57. Saaty, T.L., Vargas, L.G. 2012. Models, methods, concepts and applications of the analytic hierarchy process. In Revista Mexicana de Astronomia y Astrofisica: Serie de Conferencias (2nd ed., Vol. 17). Springer New York Heidelberg Dordrecht London.
  • 58. Sarker, N.K., Salam, P.A. 2019. Indoor and outdoor cultivation of Chlorella vulgaris and its application in wastewater treatment in a tropical city—Bangkok, Thailand. SN Applied Sciences, 1(12), 1–13. https://doi.org/10.1007/s42452-019-1704-9
  • 59. Sedghamiz, M. 2017. Site selection for commercial biofuel production from algae and sugarcane, using GIS modelling in Queensland, Australia. https://espace.library.uq.edu.au/view/UQ:686082
  • 60. Shams, D.F., Singhal, N., Elefsiniotis, P. 2018. Effect of feed characteristics and operational conditions on treatment of dairy farm wastewater in a coupled anoxic-upflow and aerobic system. Biochemical Engineering Journal, 133, 186–195. https://doi.org/10.1016/j.bej.2018.02.012
  • 61. Skarka, J. 2012. Microalgae biomass potential in Europe. TATuP - Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis, 21(1), 72–79. https://doi.org/10.14512/tatup.21.1.72
  • 62. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. https://doi.org/10.1263/jbb.101.87
  • 63. Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S. 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026
  • 64. Wang, Y. 2013. Microalgae as the third generation biofuel: Production, usage, challenges and prospects. Examensarbete Uppsala University, Department of Earth Sciences, 166, 1–31.
  • 65. Wen, Z., Johnson, M.B. 2023. Microalgae as feedstock for biofuel production. Green Approach to Alternative Fuel for a Sustainable Future, 123–135. https://doi.org/10.1016/B978-0-12-824318-3.00016-3
  • 66. Wigmosta, M.S., Coleman, A.M., Skaggs, R.J., Huesemann, M.H., Lane, L.J. 2011. National microalgae biofuel production potential and resource demand. Water Resources Research, 47(4), 1–13. https://doi.org/10.1029/2010WR009966
  • 67. Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Ravishankar, G.A., Ambati, R.R. 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells, 10(2), 1–19. https://doi.org/10.3390/cells10020393
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb229961-1a0e-46aa-93b7-46535f71a9c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.