PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A note on the general moment problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this note we show that given an indeterminate Hamburger moment sequence, it is possible to perturb the first moment in such way that the obtained sequence remains an indeterminate Hamburger moment sequence. As a consequence we prove that every sequence of real numbers is a moment sequence for a signed discrete measure supported in R+.
Rocznik
Strony
359--372
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Chouaib Doukkali University, Mathematics Department, Faculty of Sciences, Route Ben Maachou, 24000, El Jadida, Morocco
  • Mohammed V University in Rabat, Mathematics Department, Faculty of Sciences, 4 Avenue Ibn Battouta, B.P. 1014 RP, Rabat, Morocco
  • Mohammed V University in Rabat, Mathematics Department, Faculty of Sciences, 4 Avenue Ibn Battouta, B.P. 1014 RP, Rabat, Morocco
  • The University of Iowa, Department of Mathematics, 14 MacLean Hall, Iowa City, Iowa, USA
Bibliografia
  • [1] N.I. Akheizer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver & Boyd, 1965.
  • [2] C. Berg, R. Szwarz, A determinant characterization of moment sequences with finitely many mass points, Linear Multilinear Algebra 63 (2015), 1568–1576.
  • [3] R.P. Boas, The Stieltjes moment problem for functions of bounded variation, Bull. Amer. Math. Soc. 45 (1939), 399–404.
  • [4] A.J. Duran, The Stieltjes moments problem for rapidly decreasing functions, Proc. Amer. Math. Soc. 107 (1989), 731–741.
  • [5] A. Dyachenko, Rigidity of the Hamburger and Stieltjes moment sequences, Constr. Approx. 51 (2020), 441–463.
  • [6] H. El-Azhar, K. Idrissi, E.H. Zerouali, Weak positive matrices and hyponormal weighted shifts, Ufa Math. J. 11 (2019), 89–99.
  • [7] G.P. Flessas, W.K. Burton, R.R. Whitehead, On the moment problem for non-positive distributions, J. Phys. A: Math. Gen. 15 (1982), 3119–3130.
  • [8] M. Frontini, A. Tagliani, Maximum entropy in the generalized moment problem, J. Math. Phys. 39 (1998), 6706–6714.
  • [9] H.L. Hamburger, Über eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 82 (1921), 168–187.
  • [10] G. Pólya, Sur l’indétermination d’un problème voisin du problème des moments, C. R. Math. Acad. Sci. Paris 207 (1938), 708–711.
  • [11] K. Schmüdgen, The Moment Problem, Springer, 2017.
  • [12] T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb1ff2b4-a2c2-4759-88a5-379b76c74cac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.