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Abstract. In this note we show that given an indeterminate Hamburger moment
sequence, it is possible to perturb the first moment in such way that the obtained
sequence remains an indeterminate Hamburger moment sequence. As a consequence
we prove that every sequence of real numbers is a moment sequence for a signed
discrete measure supported in R+.
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1. INTRODUCTION

The moment problem is related to numerous fields of mathematics and others areas of
applied science. It is widely investigated in the literature and its formulation can be
started as follows. Let K be a closed subset of R and let {γn}0≤n≤p (p ≤ +∞)
be a sequence of R. The associated K-moment problem consists of finding a positive
Borel measure µ such that

γn =
∫

K

tndµ(t) for every n (0 ≤ n ≤ p) and supp(µ) ⊂ K. (1.1)

For K = [a, b] , R or [0, +∞) respectively, the problem (1.1) is known in the literature
as the Hausdorff, the Hamburger and the Stieltjes moment problem respectively. On
the other hand the K-moment problem is called full when p = +∞, and is truncated
in the case where p < +∞. A positive Borel measure µ solution of the problem (1.1)
is called a representing measure of {γn}0≤n≤p. In the case where the problem owns
a solution, the sequence is said to be a moment sequence. The methods for solving the
full K-moment problem vary depending on the geometric nature of K and also vary
from the full to the truncated case.

For example, if we consider the Hamburger moment problem, one approach consists
in writing positive polynomials as sum of squares and extending the Riesz functional
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L(Xn) = γn to a nonnegative functional on some adequate Hilbert space of functions.
This leads, thanks to representation theorems, to the necessary and sufficient condition
on γ to own a solution, that the Hankel matrix (γi+j)i,j is positive semi-definite.

In the truncated case, the positive condition is still necessary, but here the strategy
of solving is totally algebraic and there is no need of extension theorems. The exis-
tence of solutions in this case depends essentially on initial data and is equivalent to
the existence of a solutions with finite support.

Historically, the moment problem was defined by T.J. Stieltjes in [12], for K = R+.
His main result is

Theorem 1.1 (Stieltjes, 1894). A sequence γ = (γi)i≥0 is a R+-moment sequence,
if and only if both Hankel matrices (γi+j)i,j and (γi+j+1)i,j are positives semi-definite.

In the same paper, Stieltjes introduced the notion of determinacy for the moment
problem. More precisely, the problem is said to be K-determinate if there is a unique
measure solution for the K-moment problem, and K-indeterminate if there are many
solutions. An example of R+-indeterminate moment sequence was provided by Stieltjes
himself with the sequence (en2/2)n, associated to the log-normal distribution. For
further information about the classical moment problem we refer to [1, 11].

Little attention, however, has been given to the possibility of finding a signed
measure of finite variation, which satisfies equation (1.1), called usually the general
moment problem and the associated sequences are called charge moment sequences. To
avoid confusion, such measure will be called general in the sequel and the associated
moment problem will be called the general moment problem.

The first known result is this direction goes back to 1938 when G. Pólya [10],
proved that every sequence is a Hamburger charge moment sequence. In 1939
R.P. Boas [3] improved this result by proving that every sequence is a Stieltjes charge
moment sequence. Also, J. Duran proved in [4] a more precise result. The measure
solution of equation (1.1) can be chosen with density in the Schwartz’s space S.

Recently, it has been observed that the charge moment problem has many useful
applications in physics. Particularly, the mathematical results and techniques of the
charge moment problem can be applied successfully in the theory of renormalized or
effective iteration in quantum many-body physics, in nuclear physics, and in solid
state physics [7]. It is also applicable in optimization problems and is closely related
to the maximal entropy, see [8].

The main objective of this note is to prove that for every sequence of real numbers,
we can find an atomic solution for the charge moment problem, supported in R+.
In particular, given any sequence of real numbers (γn), there exists two indeterminate
Stieltjes moment sequences, (γ+

n ) and (γ−
n ), such that γn = γ+

n − γ−
n , for every n ≥ 0.

Such solutions are more interesting for applications in various branches in science.
This note is organized as follows. The first section is started by a quick review of

classical notion associated to the theory of orthogonal polynomials up to Hamburger
indeterminacy criterion [1], we prove then that we can perturb the first moment of
every indeterminate Hamburger moment sequence and remains indeterminate. The
proof of this result is slightly different of [5] where the question of perturbation of
finite number of moments is treated. In the last section we recall some ideas from the
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Stieltjes monograph [12] on indeterminate moment sequence, and use them to get the
main result about general moment problem.

In the whole text δa designs the Dirac measure on a.

2. INDETERMINATE HAMBURGER MOMENT SEQUENCE

The main ingredient in our paper is Hamburger’s theorem that is stated as follows:
Theorem 2.1 (Hamburger, 1920). A sequence of real numbers γ is a R-moment
sequence, if and only if the Hankel matrix (γi+j)i,j is positive semi-definite.

In particular we have det((γi+j)0≤i,j≤p) ≥ 0, for every p ≥ 0 and since the sequence
γ′′ := (γn+2)n is also a Hamburger moment sequence (associated to the positive measure
(dµ′ = x2dµ)) we get det((γi+j+2)0≤i,j≤p) ≥ 0, and then det((γi+j+2n)0≤i,j≤p) ≥ 0
for any n, p ≥ 0.

For a non-negative integer k, we adopt the next notations in the sequel:

∆k(γ) = det((γi+j)i,j≤k),

and
∆′

k(γ) = det((γ4+i+j)i,j≤k−2).
For a nondegenerate moment sequence (det(γi+j)0≤i,j≤p) > 0 for every p ≥ 0

associated to a measure µ, we introduce the next two families of important polynomials:
– orthogonal polynomials (pk)k given by

pk(x) = 1√
∆k(γ)∆k+1(γ)

∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 . . . γk

γ1 γ2 . . . γk+1
...

... . . .
...

γk−1 γk . . . γ2k−1
1 x . . . xk

∣∣∣∣∣∣∣∣∣∣∣

;

in particular, this family verifies the orthogonality conditions:
∫

R

pn(t)pk(t)dµ(t) = δn,k, n, k ∈ N;

– polynomials of the second kind (qk)k:

qk(x) =
∫

R

pk(x) − pk(t)
x − t

dµ(t).

We also consider the reproducing kernel of degree k given by

Kk(x, y) =
∑

j≤k

pj(x)pj(y) = − 1
∆k(γ)

∣∣∣∣∣∣∣∣∣∣

0 1 x . . . xk

1 γ0 γ1 . . . γk

y γ1 γ2 . . . γk+1
. . . . . . . . . . . . . . .
yk γk γk+1 . . . γ2k

∣∣∣∣∣∣∣∣∣∣

. (2.1)
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For x = y, we put ρk(x) = (Kk(x, x))−1. The sequence (ρk(x))k is clearly decreasing.
Moreover, ρk(x) is the minimum of L2-norm on the family of polynomials of degree
less than k which equal to 1 on x (see [1, 11]). Setting ρ(x) = limk ρk(x) ≥ 0, we state
an important criterion for indeterminacy given by Hamburger [1, 9]:
Theorem 2.2 (Hamburger, 1921). Let γ be a Hamburger moment sequence. The
following are equivalent:
1. The Hamburger moment problem is indeterminate,
2. ρ(x) ̸= 0 for all x ∈ R,
3. ρ(0)ρ′′(0) ̸= 0, where ρ′′(x) is associated to the sequence γ′′,
4. ρ(0) ̸= 0 and

∑
k≥0 q2

k(0) < ∞.
We begin by the next technical observation:

Lemma 2.3. Let γ be a Hamburger moment sequence, then the sequence
(

∆k(γ)
det((γ2+i+j)i,j≤k−1)

)

k

decreases to ρ(0). In particular, for any moment sequence γ the sequence
(

∆k(γ)
∆′

k(γ)

)

k

decreases to ρ(0)ρ′′(0).
Proof. We obtain our assumption by considering the determinant formula for the
reproducing kernel Kk(z, w) associated to our sequence (see [1]), as follows:

k∑

j=0
p2

j (0) = Kk(0, 0) = − 1
∆k(γ)

∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0
1 γ0 γ1 . . . γk

0 γ1 γ2 . . . γk+1
. . . . . . . . . . . . . . .
0 γk γk+1 . . . γ2k

∣∣∣∣∣∣∣∣∣∣

= det((γ2+i+j)i,j≤k−1)
∆k(γ) .

We deduce the next corollary:
Corollary 2.4. Let γ be a sequence of real number. Then γ is an indeterminate
Hamburger moment sequence if and only if for every n ∈ N ∆n(γ) > 0, and
limn→∞

∆n(γ)
∆′

n(γ) ̸= 0.

3. PERTURBATION OF HAMBURGER MOMENT SEQUENCES

It is not difficult to see that if γ is an indeterminate Hamburger moment sequence γ,
then there exist t, such that the next first order perturbed moment sequence

γ0 + t, γ1, γ2, γ3, . . .
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is also an indeterminate Hamburger moment sequence. Indeed, let µ1 and µ2 be two
different positive Borel measures such that γk(µ1) = γk(µ2) = γ. Then,

νi = µi + tδ0, i = 1, 2,

are two different solutions to perturbed moment problem (γn + tδn,0)n.
The representing measures above, ν1 and ν2 are positive for t ∈ (−ρ(0), 0) thanks

to the next classical result:

Theorem 3.1. For any solution µ of the Hamburger moment problem we have

µ({0}) ≤ ρ(0).

Furthermore, there is a unique solution µ0 such that µ0({0}) = ρ(0).

Notice also that, if t = ρ(0), then the moment problem γ0 − ρ(0), γ1, γ2, γ3, . . .,
is a determinate Hamburger moment problem by the same result.

Finally if t < −ρ(0) the sequence γ0 + t, γ1, γ2, γ3, . . . is not a moment sequence,
in fact if there is any measure solution ν for this moment problem, then ν − tδ0 is
a solution for the moment problem associated to γ, then:

[ν − tδ0]({0}) = ν({0}) − t ≥ −t > ρ(0)

which contradicts Theorem 3.1. In conclusion, we have,

Proposition 3.2. Let γ be an indeterminate Hamburger moment sequence, then

γ0 + x, γ1, γ2, γ3, . . .

is an indeterminate Hamburger moment sequence if and only if x ∈ (−ρ(0), +∞).

Remark 3.3. The result remains true for any sequence such that ρ(0) ̸= 0, in particular
for any measure charging 0.

The problem of perturbing the second moment term is much more difficult. We have
the following result:

Theorem 3.4. Let γ be an indeterminate Hamburger moment sequence, then there is
a constant δ > 0 such that the sequence:

γ0, γ1 + x, γ2, γ3, . . .

remains an indeterminate Hamburger moment sequence, for every |x| < δ.

Proof. We will prove that, there is a positive constant τ such that the moment sequence
s(t) is an indeterminate Hamburger moment sequence, where

s = s(t) =
{

sn = γn if n ̸= 1,

s1 = γ1 + t.
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For k ≥ 2, let fk(t) be the function defined on R+ by

fk(t) := ∆k(s)
∆′

k(s) = ∆k(s)
∆′

k(γ)

= 1
∆′

k(γ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 + t γ2 . . . γk

γ1 + t γ2 . . . . . .
...

γ2 γ3 . . . . . .
...

...
... . . . . . . ...

γk γk+1
. . . . . . γ2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −t2 + αkt + ∆k(γ)
∆′

k(γ) ,

where

αk = f ′
k(0) = − 2

∆′
k(γ)

∣∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 γ3 . . . γk

γ3 γ4 . . . . . . γk+2
γ4 γ5 . . . . . . γk+3
...

... . . . . . . ...

γk+1 γk+2
. . . . . . γ2k

∣∣∣∣∣∣∣∣∣∣∣∣

.

Lemma 3.5.
αk = 2∆k(γ)

∆′
k(γ)

∑

j≤k

p′
j(0)pj(0).

In particular, the sequence (αk)k is bounded.

Proof. We recall the expression of the reproducing kernel Kk(x, y):

Kk(x, y) =
k∑

j=0
pj(x)pj(y) = − 1

∆k(γ)

∣∣∣∣∣∣∣∣∣∣

0 1 x . . . xk

1 γ0 γ1 . . . γk

y γ1 γ2 . . . γk+1
. . . . . . . . . . . . . . .
yk γk γk+1 . . . γ2k

∣∣∣∣∣∣∣∣∣∣

.

Then

∂xKk(x, y) =
k∑

j=0
p′

j(x)pj(y) = − 1
∆k(γ)

∣∣∣∣∣∣∣∣∣∣

0 0 1 . . . kxk−1

1 γ0 γ1 . . . γk

y γ1 γ2 . . . γk+1
. . . . . . . . . . . . . . .
yk γk γk+1 . . . γ2k

∣∣∣∣∣∣∣∣∣∣

.

In particular, we have

k∑

j=0
p′

j(0)pj(0) = − 1
∆k(γ)

∣∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 γ3 . . . γk

γ3 γ4 . . . . . . γk+2
γ4 γ5 . . . . . . γk+3
...

... . . . . . . ...

γk+1 γk+2
. . . . . . γ2k

∣∣∣∣∣∣∣∣∣∣∣∣

= αk
∆′

k(γ)
2∆k(γ) .
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For the second part, we note that

|αk| ≤ 2
∣∣∣∣
∆k(γ)
∆′

k(γ)

∣∣∣∣
∑

j≤k

|p′
j(0)pj(0)| ≤ 2

∣∣∣∣
∆2(γ)
∆′

2(γ)

∣∣∣∣
∑

j≤k

|p′
j(0)pj(0)|.

Since γ is indeterminate, we have
∑

n |pn(0)|2 < ∞ (and also
∑

n |qn(0)|2 < ∞). So it
suffices to show that

∑
n |p′

n(0)|2 < ∞. We first observe that

pn(x) = pn(0) + x
∑

k≤n−1
αn,kpk(z), where αn,k = pk(0)qn(0) − pn(0)qk(0)

Indeed, since
pn(x) − pn(0)

x
∈ Rn−1[X],

we get
pn(x) − pn(0)

x
=

∑

k≤n−1
αn,kpk(x)

with

αn,k = φ

(
pn(x) − pn(0)

x
pk(x)

)
= φ

(
pn(x) − pn(0)

x
(pk(x) − pk(0) + pk(0))

)

= pk(0)φ
(

pn(x) − pn(0)
x

)
− pn(0)φ

(
pk(x) − pk(0)

x

)

= pk(0)qn(0) − pn(0)qk(0),

where φ(p) =
∫
R p(x)dµ(x) for every polynomial p. This implies that

p′
n(0) =

∑

k≤n−1
αn,kpk(0),

and using the Cauchy–Schwarz inequality we get

|p′
n(0)|2 ≤

∑

k≤n−1
|αn,k|2

∑

k≤n−1
|pk(0)|2 ≤

∑

k≥0
|pk(0)|2

∑

k≤n−1
|αn,k|2.

It follows that

∑

n≥0
|p′

n(0)|2 ≤
∑

n≥0
|pn(0)|2


∑

n≥0

∑

k≤n−1
|αn,k|2




≤
∑

n≥0
|pn(0)|2


∑

n≥0

∑

k≥0
|pk(0)qn(0) − pn(0)qk(0)|2




≤ 4
∑

n≥0
|pn(0)|2


∑

n≥0
|qn(0)|2

∑

k≥0
|pk(0)|2




= 4
∑

n≥0 |qn(0)|2
ρ2(0) < ∞.
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In particular,

F (t) := −t2 + inf
k≥2

αkt + ρ(0)ρ′(0) ≤ inf
k≥2

fk(t), t ≥ 0,

and
G(t) := −t2 + sup

k≥2
αkt + ρ(0)ρ′(0) ≤ inf

k≥2
fk(t), t ≤ 0.

Since F (0) = G(0) = ρ(0)ρ′(0) > 0 and F , G are continuous there exist δ > 0 such
that F (x) > ϵ > 0 and G(x) > ϵ for |x| < δ.

In particular, limk
∆k(s(x))
∆′

k
(s(x)) ≠ 0 and ∆k(s(x)) = fk(x)∆′

k(γ) > 0 for all k. The
claimed is proved by Corollary 2.4.

Remark 3.6. Unlike the first order perturbation, the interval in question is never
unbounded, since lim|t|→+∞ fk(t) = −∞.

As a direct consequence, we get the following result:

Theorem 3.7. Let γ be a Stieltjes moment sequence, which is Hamburger indetermi-
nate. Then (γ2n)n is an indeterminate Stieltjes moment sequence.

Proof. It is clear that (γ2n)n is a Stieltjes moment sequence. To prove that (γ2n)n is
indeterminate we will use Theorem 3.4, which provides a Hamburger moment sequence
s = (sn)n, such that

s =
{

sn = γn if n ̸= 1,

s1 = γ1 + τ

with τ > 0.
Let us show that s is a Stieltjes moment sequence. By Stieltjes’s theorem, it remains

to check that (si+j+1)i,j is positive definite. To this aim, let k ≥ 1 be given,

det((si+j+1)i,j≤k) =

∣∣∣∣∣∣∣∣∣∣∣

γ1 + τ γ2 . . . γk+1

γ2 . . . . . .
...

... . . . . . . ...

γk+1
. . . . . . γ2k+1

∣∣∣∣∣∣∣∣∣∣∣

= τ

∣∣∣∣∣∣∣∣∣∣∣

γ3 γ4 . . . γk+2

γ4 . . . . . .
...

... . . . . . . ...

γk+2
. . . . . . γ2k+1

∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 . . . γk+1

γ2 . . . . . .
...

... . . . . . . ...

γk+1
. . . . . . γ2k+1

∣∣∣∣∣∣∣∣∣∣∣

= τ det((γi+j+3)i,j≤k−1) + det((γi+j+1)i,j≤k) > 0,

where to get that det((γi+j+3)i,j≤k−1) and det((γi+j+1)i,j≤k) > 0, we use a similar
idea to [2, 6]. In fact, if det((γi+j+k0)i,j≤k) = 0 for some k0, k ∈ N, we get that



A note on the general moment problem 367

det((γi+j)i,j≤n) = 0 for all n ≥ k0 + 1, in particular the moment sequence γ will be
Hamburger determinate, which is impossible.

Since γ and s are Stieltjes moment sequences, there exist two positive measures µ
and ν such that

γ2n =
∞∫

0

t2ndµ(t) =
∞∫

0

undµ(
√

u) =
∞∫

0

undµ′(u).

and

γ2n = s2n =
∞∫

0

undν′(u).

Moreover,

s1 =
∞∫

0

√
udν′(u) = τ + γ1 = τ +

∞∫

0

√
udµ′(u)

Finally µ′ ̸= ν′, and hence (γ2n)n is indeterminate.

Remark 3.8. We mention here that our conditions does not imply that the sequence
γ is a determinate Stieltjes moment sequence. It is known that there exists a determi-
nate Stieltjes moment sequence which it Hamburger indeterminate; see, for example,
[11, Example 8.11].

Corollary 3.9. Let γ be a sequence of positive numbers, and γ′ the shifted sequence
of γ. We assume that

inf
k≥0

∆k(γ) > 0, inf
k≥0

∆k(γ′) > 0 (3.1)

and
lim

k→∞
∆k(γ)
∆′

k(γ) > 0. (3.2)

Then (γ2n)n is an indeterminate Stieltjes moment sequence.

4. EVERY SEQUENCE IS A DIFFERENCE OF
INDETERMINATE STIELTJES MOMENT SEQUENCE

The starting point of Stieltjes is the study of the continued fractions:

1
a1z + 1

a2+ 1

a3z+ ...+ 1
a2n+ 1

a2n+1z+···

(4.1)
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with coefficients ai > 0. He proved in particular the following: If (an)n ∈ ℓ1(N),
then the odd convergent p2n(z)

q2n(z) and the even convergent p2n+1(z)
q2n+1(z) have different limits

in C \ R−. Furthermore, there exist αi, βi ≥ 0 and λi, ζi > 0 such that:

lim
n→∞

p2n(z)
q2n(z) =

∑

n≥0

αn

z + λn
,

lim
n→∞

p2n+1(z)
q2n+1(z) =

∑

n≥0

βn

z + ζn
,

where λn ̸= ζn for every n. If we put ν =
∑

n≥0 βnδζn
and µ =

∑
n≥0 αnδλn

, then
we can write

lim
n→∞

p2n(z)
q2n(z) =

∞∫

0

dµ(t)
z + t

,

lim
n→∞

p2n+1(z)
q2n+1(z) =

∞∫

0

dν(t)
z + t

.

Furthermore, he proved that for every n ∈ N, γn :=
∫ ∞

0 tndµ(t) =
∫ ∞

0 tndν(t). This
case is in particular indeterminate, since the continuous fraction can not converge to
a unique function.

If (an)n ̸∈ ℓ1(N), then pn(z)
qn(z) converges in C \ R− to

∫ ∞
0

dµ(t)
z+t for some measure µ

supported on R+, which is the unique solution of a moment problem γn :=
∫ ∞

0 tndµ(t),
this is the determinate case.

As a consequence, we have the following theorem.

Theorem 4.1 (Stieltjes). Every indeterminate Stieltjes moment sequence γ has
a discrete solution µ.

We are ready to show our main result.

Theorem 4.2. Let γ be a sequence of real numbers, then there exists a sequence of
real numbers (cn)n and a sequence of positive numbers (ξn)n such that

γk =
∑

n≥0
cnξk

n for every k ≥ 0.

Proof. Let u = (un)n be the sequence defined by
{

u2n = γn,

u2n+1 = 0.

We will write u as a difference of two Stieltjes moment sequences v and w verifying
(3.1) and (3.2) in Corollary 3.9.
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We proceed by induction in our construction.
1. We choose v0 ≥ 1, w0 ≥ 1, v1 = w1 ≥ 1, such that v0 − w0 = u0,
2. We take v2, w2 and v3 = w3 in [1, +∞[ great enough such that

∆1(v) =
∣∣∣∣
v0 v1
v1 v2

∣∣∣∣ = v0v2 − v2
1 ≥ 1 and ∆1(w) =

∣∣∣∣
w0 w1
w1 w2

∣∣∣∣ = w0w2 − w2
1 ≥ 1

and

∆1(v′) =
∣∣∣∣
v1 v2
v2 v3

∣∣∣∣ = v3v1 − v2
2 ≥ 1 and ∆1(w′) =

∣∣∣∣
w1 w2
w2 w3

∣∣∣∣ = w3w1 − w2
2 ≥ 1.

3. Now, since ∆2(v) =

∣∣∣∣∣∣

v0 v1 v2
v1 v2 v3
v2 v3 v4

∣∣∣∣∣∣
= ∆1(v)v4 + c , and ∆1(v) > 0 and

∆2(v)
∆′

2(v) = ∆1(v)v4 + c

v4
= ∆1(v) + c

v4
,

for some real number c, we can pick out v4, w4 > 0 sufficiently large such that

∆2(v) ≥ 1, ∆2(w) ≥ 1,
∆2(v)
∆′

2(v) ≥ ∆1(v)
2 and ∆2(w)

∆′
2(w) ≥ ∆1(w)

2 .

A similar reasoning can be applied with regard to w4, so we can choose them such
that v4 − w4 = u4.
Suppose that we have constructed

vk − wk = uk, k ≤ 2n − 1.

such that, for any k ≤ n − 1

∆k(v) ≥ 1, ∆k(w) ≥ 1, ∆k(v′) ≥ 1, ∆k(w′) ≥ 1,

∆k(v)
∆′

k(v) ≥ ∆k−1(v)
∆′

k−1(v) − ak,
∆k(w)
∆′

k(w) ≥ ∆k−1(w)
∆′

k−1(w) − bk,

where an and bn will be fixed later.
For a real number x, we have

F (x) := ∆n(w)
∆′

n(w) =

∣∣∣∣∣∣∣∣∣∣

w0 w1 . . . wn

w1 w2 . . .
...

...
... . . . ...

wn . . . w2n−1 x

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

w4 w5 . . . wn+2

w5 w6 . . .
...

...
... . . . ...

wn+2 . . . . . . x

∣∣∣∣∣∣∣∣∣∣

= x∆n−1(w) + f(w0, w1, . . . , w2n−1)
x∆′

n−1(w) + g(w4, w5, . . . , w2n−1) .
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Since limx→∞ F (x) = ∆n−1(w)
∆′

n−1(w) , for any 0 < bn < ∆n−1(w)
∆′

n−1(w) , we can take x = w2n great

enough such that F (w2n) > ∆n−1(w)
∆′

n−1(w) − bn, and ∆n(w) ≥ 1.
Using the same method, we have

G(x) := ∆n(v)
∆′

n(v) =

∣∣∣∣∣∣∣∣∣∣

v0 v1 . . . vn

v1 v2 . . .
...

...
... . . . ...

vn . . . v2n−1 x

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

v4 v5 . . . vn+2

v5 v6 . . .
...

...
... . . . ...

vn+2 . . . . . . x

∣∣∣∣∣∣∣∣∣∣

= x∆n−1(v) + f(v0, v1, . . . , v2n−1)
x∆′

n−1(v) + g(v4, v5, . . . , v2n−1) .

Since lim
x→∞

G(x) = ∆n−1(v)
∆′

n−1(v) , for any 0 < an < ∆n−1(w)
∆′

n−1(v) , we can take x = v2n large

enough such that G(x) > ∆n−1(v)
∆′

n−1(v) − an and ∆n(v) ≥ 1.
Since the choice is arbitrary, we can take w2n and v2n such that u2n = v2n − w2n.
Similarly, we can find v2n+1 = w2n+1 such that

∆n(v′) ≥ 1, ∆n(w′) ≥ 1

This completes the induction.
We choose an and bn arbitrary to satisfy

∆1(v)
4 ≥ ∑

k≥2 ak
∆1(w)

4 ≥ ∑
k≥2 bk .

Such v and w verify (3.1) and (3.2), then by Lemma 3.9 (v2n)n and (w2n)n are
indeterminate. Using Theorem 4.1, there exists two atomic measures µ =

∑
n≥0 βnδζn

and ν =
∑

n≥0 αnδλn
supported on R+ solution to the moment problem (v2n)n and

(w2n)n respectively. Hence, for k ≥ 0, we get

γk = u2k = v2k − w2k =
∑

n≥0
βnζk

n −
∑

m≥0
αmλk

m =
∑

n≥0
cnξk

n.
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