PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nitro Groups vs. N-Oxide Linkages: Effects Upon Some Key Determinants of Detonation Performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing the nitrogen/carbon ratios in the molecular frameworks of C,H,N,O explosives has attracted considerable attention because it tends to result in more positive heats of formation and often greater densities. In conjunction with this, there has been a growing interest in N-oxide linkages, N+ → O−, as another source of oxygen in these compounds, in addition to or even possibly replacing NO2 groups. In this study, for a series of polyazines and polyazoles, we have compared the effects of introducing a single N-oxide linkage or NO2 group upon key properties that affect detonation velocity and detonation pressure. We found that: (1) The heats of formation per gram of compound, which is what is relevant for this purpose, are almost always higher for the N-oxides. (2) The nitro derivatives have greater densities and detonation heat releases. In relation to the latter, it must be kept in mind that increasing detonation heat release tends to be accompanied by increasing sensitivity. (3) The N-oxides produce more moles of gaseous detonation products per gram of compound.
Rocznik
Strony
3--25
Opis fizyczny
Bibliogr. 72 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, University of New Orleans 70148 New Orleans (Louisiana), United States
autor
  • Department of Chemistry, University of New Orleans 70148 New Orleans (Louisiana), United States
Bibliografia
  • [1] Ornellas, D. L. The Heat and Products of Detonation of Cyclotetramethylenetetramine, 2,4,6-Trinitrotoluene, Nitromethane and Bis[2,2-dinitro-2-fluoroethyl]formal. J. Phys. Chem. 1968, 72: 2390-2394.
  • [2] Kamlet, M. J.; Ablard, J. E. Chemistry of Detonations. II. Buffered Equilibria. J. Chem. Phys. 1968, 48: 36-42.
  • [3] Meyer, R.; Köhler, J.; Homburg, A. Explosives, 6th ed., Wiley-VCH, Weinheim, 2007; ISBN 9783527316564.
  • [4] Pepekin, V. I.; Gubin, S. A. Heat of Explosion of Commercial and Brisant High Explosives. Combust. Explos. Shock Waves 2007, 43: 212-218.
  • [5] Mader C. L. Numerical Modeling of Explosives and Propellants. 2nd ed., CRC Press, Boca Raton, FL, 1998; ISBN 9780849331497.
  • [6] Kamlet, M. J.; Jacobs, S. J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C,H,N,O Explosives. J. Chem. Phys. 1968, 48: 23-35.
  • [7] Politzer, P.; Murray, J. S. Some Perspectives on Estimating Detonation Properties of C,H,N,O Compounds, Cent. Eur. J. Energ. Mater. 2011, 8: 209-220.
  • [8] Rice, B.M.; Hare, J. Predicting Heats of Detonation Using Quantum Mechanical Calculations. Thermochim. Acta 2002, 384: 377-391.
  • [9] Linstrom, P. J.; Mallard, W. G. (Eds.), NIST Chemistry Webbook, NIST Standard Reference Database No. 69. National Institute of Standards and Technology,Gaithersburg, MD, http://www.nist.gov
  • [10] Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. Boca Raton, FL, 2003; ISBN 9780849315893.
  • [11] Wright, J. S. Stability and Aromaticity of Nitrogen Rings. N3 +, N4, and N6. J. Am. Chem. Soc. 1974, 96: 4753-4760.
  • [12] Benson, F. R. The High Nitrogen Compounds. Wiley-Interscience, New York, 1984; ISBN: 9780471026525.
  • [13] Cotton, F. A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Advanced Inorganic Chemistry. 6th ed., Wiley-Interscience, Chichester, UK, 1999; ISBN 9780471199571.
  • [14] Fabian, J.; Lewars, E. Azabenzenes (Azines) – The Nitrogen Derivatives of Benzene with One to Six N Atoms: Stability, Homodesmotic Stabilization Energy, Electron Distribution, and Magnetic Ring Current; a Computational Study. Can. J. Chem. 2004, 82: 50-69.
  • [15] Politzer, P.; Lane, P.; Murray, J. S. Computational Analysis of Relative Stabilities of Polyazine N-Oxides. Struct. Chem., 2013, 24: 1965-1974.
  • [16] Politzer, P.; Murray, J. S. Computational Analysis of Polyazoles and Their N-Oxides. Struct. Chem., in press.
  • [17] Stine, J. R. Molecular Structure and Performance of High Explosives. Mater. Res. Soc. Symp. Proc. 1993, 296: 3-12.
  • [18] Eckhardt, C. J.; Gavezzotti, A. Computer Simulations and Analysis of Structural and Energetic Features of Some Crystalline Energetic Materials. J. Phys. Chem. B 2007, 111: 3430-3437.
  • [19] Politzer, P.; Lane P.; Murray J. S. Electrostatic Potentials, Intralattice Attractive Forces and Crystal Densities of Nitrogen-Rich C,H,N,O Salts. Crystals 2016, 6: 7(1-14).
  • [20] Politzer, P.; Murray, J. S. Perspectives on the Crystal Densities and Packing Coefficients of Explosive Compounds. Struct. Chem. 2016, 27: 401-408.
  • [21] Politzer, P.; Martínez, J.; Murray, J. S.; Concha, M. C.; Toro-Labbé, A. An Electrostatic Interaction Correction for Improved Crystal Density Prediction. Mol. Phys. 2009, 107: 2095-2101.
  • [22] Rice, B. M.; Byrd E. F. C. Evaluation of Electrostatic Descriptors for Predicting Crystalline Density. J. Comput. Chem. 2013, 34: 2146-2151.
  • [23] Dlott, D. D. Fast Molecular Processes in Energetic Materials. In: Energetic Materials. Part 2. Detonation, Combustion (Politzer, P.; Murray J. S., Eds.), Elsevier, Amsterdam, 2003, ch. 6: 125-191; ISBN 0444515194.
  • [24] Shackelford, S. A. Role of Thermochemical Decomposition in Energetic Material Initiation, Sensitivity and Explosive Performance. Cent. Eur. J. Energ. Mater. 2008, 5: 75-101.
  • [25] Klapötke, T. M. Chemistry of High Energy Materials. 2nd ed., de Gruyter, Berlin, 2012; ISBN 9783110439328.
  • [26] Kamlet, M. J.; Dickinson, C. Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman-Jouguet Detonation Pressures of the Basis of Available Experimental Information. J. Chem. Phys. 1968, 48: 43-50
  • [27] Kamlet, M. J.; Hurwitz, H. Chemistry of Detonations. IV. Evaluation of a Simple Predictional Method for Detonation Velocities of C-H-N-O Explosives. J. Chem. Phys. 1968, 48: 3685-3692.
  • [28] Urbański, T. Chemistry and Technology of Explosives, Vol. 4, Pergamon Press, Oxford, UK, 1984.
  • [29] Shekhar, H. Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives. Cent. Eur. J. Energ. Mater. 2012, 9: 39-48.
  • [30] Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. 3,3’-Azobis(6-amino-1,2,4,5-tetrazine): A Novel High-Nitrogen Energetic Material. Angew. Chem. Int. Ed. 2000, 39: 1791-1793.
  • [31] Hiskey, M. A.; Chavez, D. E.; Naud, D. L. Insensitive High-Nitrogen Compounds. Report LA-UR-01-1493, Los Alamos National Laboratory, Los Alamos, NM, 2001.
  • [32] Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. A Review of Energetic Materials Synthesis. Thermochim. Acta 2002, 384: 187-204.
  • [33] Huynh, M.-H. V.; Hiskey, M. A.; Hartline, E. L.; Montoya, D. P.; Gilardi R. Polyazido High-Nitrogen Compounds: Hydrazo- and Azo-1,3,5-triazine. Angew. Chem. Int. Ed. 2004, 43: 4924-4928.
  • [34] Chavez, D. E.; Hiskey, M. A.; Naud, D. L. Tetrazine Explosives. Propellants Explos. Pyrotech. 2004, 29: 209-215.
  • [35] Jaidann, M.; Roy, S.; Abou-Rachid, H.; Lussier, L.-S. A DFT Theoretical Study of Heats of Formation and Detonation Properties of Nitrogen-Rich Explosives. J. Hazard. Mater. 2009, 176: 165-173.
  • [36] Hollins, R. A.; Merwin, L. H.; Nissan, R. A.; Wilson, W. S.; Gilardi, R. Aminonitropyridines and Their N-Oxides. J. Heterocycl. Chem. 1996, 33: 895-904.
  • [37] Fischer, D.; Klapötke, T. M.; Piercey, D. G.; Stierstorfer, J. Synthesis of 5-Aminotetrazole-l N-oxide and Its Azo Derivative: A Key Step in the Developoment of New Energetic Materials. Chem. Eur. J. 2013, 19: 4602-4613.
  • [38] Politzer, P.; Murray, J. S. Impact Sensitivity and the Maximum Heat of Detonation. J. Mol. Model. 2015, 21: 262(1-11).
  • [39] Zhang, J.; Zhang, Q.; Vo, T. T.; Parrish, D. A.; Shreeve, J. M. Energetic Salts with π-Stacking and Hydrogen-Bonding Interaction Lead the Way to Future Energetic Materials. J. Am. Chem. Soc. 2015, 137: 1697-1704.
  • [40] Rice, B. M.; Hare, J. J. A Quantum Mechanical Investigation of the Relation Between Impact Sensitivity and the Charge Distribution in Energetic Molecules. J. Phys. Chem. A 2002, 106: 1770-1783.
  • [41] Zeman, S. Sensitivities of High Energy Compounds. Struct. Bond. 2007, 125: 195-271.
  • [42] Pepekin, V. I.; Korsunskii, B. L.; Denisaev, A. A. Initiation of Solid Explosives by Mechanical Impact. Combust. Explos. Shock Waves (Engl. Transl.) 2008, 44: 586-590.
  • [43] Politzer, P.; Murray, J. S. Some Molecular/Crystalline Factors that Affect the Sensitivities of Energetic Materials: Molecular Surface Electrostatic Potentials, Lattice Free Space and Maximum Heat of Detonation per Unit Volume. J. Mol. Model. 2015, 21: 25(1-11).
  • [44] Lide, D. R. (Ed.), Handbook of Chemistry and Physics. 87th ed., CRC Press, Boca Raton, FL, 2006; ISBN 0-8493-0487-3.
  • [45] Licht, H.-H. Performance and Sensitivity of Explosives. Propellants Explos. Pyrotech. 2000, 25: 126-132.
  • [46] Politzer, P.; Murray, J. S. Detonation Performance and Sensitivity: A Quest for Balance. Adv. Quantum Chem. 2014, 69: 1-30.
  • [47] Kamlet, M. J. Proc. 6th Symposium (Int.) on Detonation 1976; Report No. ACR 221, Office of Naval Research, Arlington, VA, 312-322.
  • [48] Kamlet, M. J.; Adolph, H. G. The Relationship of Impact Sensitivity with Structure of Organic High Exlosives. II. Polynitroaromatic Explosives. Propellants Explos. 1979, 4: 30-34.
  • [49] Politzer, P.; Murray, J. S. High Performance, Low Sensitivity: Conflicting or Compatible? Propellants Explos. Pyrotech. 2016, 41: 1-13.
  • [50] Wilson, K. J.; Perera, S. A.; Bartlett, R. J.; Watts, J. D. Stabilization of the Pseudo-Benzene N6 Ring with Oxygen. J. Phys. Chem. A 2001, 105: 7693-7699.
  • [51] Churakov, A. M.; Tartakovsky, V. A. Progress in 1,2,3,4-Tetrazine Chemistry. Chem. Rev. 2004, 104: 2601-2616.
  • [52] Licht, H.-H.; Ritter, H. New Energetic Materials from Triazoles and Tetrazines J. Energ. Mater. 1994, 12: 223-235.
  • [53] Zelenin, A. K.; Stevens, E. D.; Trudell, M. L. Synthesis and Structure of 4-[(4-Nitro-1,2,5-oxadiazole-3-yl)-NNO-azoxyl]-1,2,5-oxadiazol-3-amine. Struct. Chem. 1997, 8: 373-377.
  • [54] Li, J.-R.; Zhao, J.-M.; Dong, H.-S. Crystal Structure of 2,4,6-Trinitropyridine and Its N-Oxide. J. Chem. Cryst. 2005, 35, 943-948.
  • [55] Huynh, M. Y. V.; Hiskey, M. A.; Chavez, D. E.; Gilardi, R. D. Preparation, Characterization, and Properties of 7-Nitrotetrazolo [1,5-f]furazano[4,5-b]pyridine 1-Oxide. Energ. Mater. 2005, 23: 99-106.
  • [56] Sheremetev, A. B.; Kulagina, V. O.; Aleksandrova, N. S.; Dmitriev, D. E.; Strelenko, Y. A.; Lebedev, V. P.; Matyushin, Y. N. Dinitro Trifurazans with Oxy, Azo and Azoxy Bridges. Propellants Explos. Pyrotech. 1998, 23: 142-149.
  • [57] Gökçinar, E.; Klapötke, T. M.; Bellamy, A. J. Computational Study on 2,6-Diamino-3,5-dinitropyrazine and Its 1-Oxide and 1,4-Dioxide Derivatives. J. Mol. Struct. (Theochem) 2010, 953: 18-23.
  • [58] Politzer, P.; Lane, P.; Murray, J. S. Computational Characterization of Two Di-1,2,3,4-tetrazine Tetraoxides, DTTO and iso-DTTO, as Potential Energetic Compounds. Cent. Eur. J. Energ. Mater. 2013, 10: 37-52.
  • [59] Politzer, P.; Lane, P.; Murray, J. S. Tricyclic Polyazine N-Oxides as Proposed Energetic Compounds. Cent. Eur. J. Energ. Mater. 2013, 10: 171-189.
  • [60] Politzer, P.; Murray, J. S. Detonation Product Composition and Detonation Properties. Cent. Eur. J. Energ. Mater. 2014, 11: 459-474.
  • [61] Lai, W.; Lian, P.; Ge, Z.; Liu, Y.; Yu, T.; Lv, J. Theoretical Study of the Effects of N-Oxides on the Performances of Energetic Compounds. J. Mol. Model. 2016, 22: 83(1-11).
  • [62] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A., et al., Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford, CT, 2009.
  • [63] Bulat, F. A.; Toro-Labbé, A.; Brinck, T.; Murray, J. S.; Politzer, P. Quantitative Analysis of Molecular Surfaces: Volumes, Electrostatic Potentials and Average Local Ionization Energies. J. Mol. Model. 2010, 16: 1679-1693.
  • [64] Politzer, P.; Ma, Y.; Lane, P.; Concha, M. C. Computational Prediction of Standard Gas, Liquid and Solid-Phase Heats of Formation and Heats of Vaporization and Sublimation. Int. J. Quantum Chem. 2005, 105: 341-347.
  • [65] Exner, O. Correlation Analysis of Chemical Data. Plenum Press, New York, 1988.
  • [66] Katritzky, A. R.; Taylor, R. Heteroaromatics Containing One Six-Membered Ring. Adv. Heterocyclic Chem. 1990, 47: 277-323.
  • [67] Poole, J. S. A Computational Study of the Chemistry of Substituted 3-Nitrenopyridine 1-Oxides. J. Mol. Struct. (Theochem) 2009, 894: 93-102.
  • [68] Tang, Z.-X.; Li, X.-H.; Zhang, X.-Z. Theoretical Studies on Bond Dissociation Energies for Some Pyridine N-Oxide Biological Compounds by Density Functional Theory and CBS-4M Method. J. Mol. Struct. (Theochem) 2009, 907: 126-130.
  • [69] Politzer, P.; Lane, P.; Murray, J. S. Some Interesting Aspects of N-Oxides. Mol. Phys. 2014, 112: 719-725.
  • [70] Ramsden, C. A. The Influence of Aza Substitution on Azole Aromaticity. Tetrahedron 2010, 66: 2695-2699.
  • [71] Storm, C. B.; Stine, J. R.; Kramer J. F. Sensitivity Relationships in Energetic Materials. In: Chemistry and Physics of Energetic Materials. (Bulusu S.N., Ed.) Kluwer, Dordrecht, The Netherlands, 1990, ch. 27: 605-639; ISBN: 9789401074131.
  • [72] Gilardi, R. D.; Butcher, R. J. 2,6-Diamino-3,5-Dinitro-1,4-Pyrazine 1-Oxide. Acta Cryst. E 2001, 57: 657-658.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb1b35bc-5326-4a37-ac47-a4534df53382
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.