PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of non-linear loading– unloading hysteresis behavior of blood clots

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stress-strain characteristics of a clot during loading/unloading mechanical cycles are significant features to assess the underlying mechanisms of thrombectomy, especially when multiple thrombectomy attempts are required. We investigated a damage model to predict loading/unloading response of clots. To study the validity of the model, we tested theoretical models to reproduce the experimentally obtained mechanical characteristics of clots under various conditions. Three types of clot analogs with different red blood cell (RBC) compositions were prepared. Cylindrical clot analogs were formed for the tensile and compression tests. Loading/unloading tests at 80% of strain were conducted, where the material parameters were determined by fitting the results to a theoretical curve combining the damage model and the elasto-plastic constitutive model. Through the computation for theoretical curves, unique characteristics of clots were revealed such that the hysteresis loss rate did not change by varying RBC contents, except for the clot created with 0% RBC composition, under compressive loading. In addition, the plastic strain decreased as the RBC content decreased under tensile loading, whereas it increased as the RBC content decreased under compressive loading. A three-dimensional finite element method (FEM) was employed with the determined parameters. The FEM could accurately reproduce the experimental stress-strain curves for all types of clot analogs and for both loading types up to a strain of 80%. The results indicate that the theoretical model which incorporates and combines the damage model and the elasto-plastic constitutive model is applicable to predict the non-linear stress–strain behavior of clots under loading and unloading.
Twórcy
  • Department of Mechanical Engineering, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Japan
  • Biomedical Solutions Inc., Nihombashihon-cho, Chuo-ku, Tokyo, Japan
  • Biomedical Solutions Inc., Nihombashihon-cho, Chuo-ku, Tokyo, Japan
  • Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Bibliografia
  • [1] Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021;20 (10):795–820.
  • [2] Qin C, Zhou L, Hu Z, Yang S, Zhang S, Chen M, et al. Clinical characteristics and outcomes of COVID-19 patients with a history of stroke in Wuhan. China Stroke 2020;51 (7):2219–23.
  • [3] Saver JL, Goyal M, Bonafe A, Diener H-C, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015;372(24):2285–95.
  • [4] Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015;372(11):1019–30.
  • [5] Ding D. Endovascular mechanical thrombectomy for acute ischemic stroke: A new standard of care. J Stroke 2015;17:123–6.
  • [6] Turk AS, Siddiqui A, Fifi JT, De Leacy RA, Fiorella DJ, Gu E, et al. Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): a multicentre, randomised, open label, blinded outcome, non-inferiority trial. The Lancet 2019;393 (10175):998–1008.
  • [7] Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the Early Management of Acute Ischemic Stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019;50(12).
  • [8] Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischaemic strokeendorsed by Stroke Alliance for Europe (SAFE). Eur Stroke J 2019;4(1):6–12.
  • [9] Gascou G, Lobotesis K, Machi P, Maldonado I, Vendrell JF, Riquelme C, et al. Stent retrievers in acute ischemic stroke: complications and failures during the perioperative period. AJNR Am J Neuroradiol 2014;35(4):734–40.
  • [10] Yeo LLL, Bhogal P, Gopinathan A, Cunli Y, Tan B, Andersson T. Why does mechanical thrombectomy in large vessel occlusion sometimes fail?: A review of the literature. Clin Neuroradiol 2019;29(3):401–14.
  • [11] Chueh JY, Wakhloo AK, Gounis MJ. Effectiveness of mechanical endovascular thrombectomy in a model system of cerebrovascular occlusion. AJNR Am J Neuroradiol 2012;33 (10):1998–2003.
  • [12] Balami JS, White PM, McMeekin PJ, Ford GA, Buchan AM. Complications of endovascular treatment for acute ischemic stroke: prevention and management. Int J Stroke 2018;13 (4):348–61.
  • [13] Pfaff J, Rohde S, Engelhorn T, Doerfler A, Bendszus M, Möhlenbruch MA. Mechanical thrombectomy using the new solitaire platinum stent-retriever: reperfusion results, complication rates and early neurological outcome. Clin Neuroradiol 2019;29(2):311–9.
  • [14] Leishangthem L, Satti SR. Vessel perforation during withdrawal of Trevo ProVue stent retriever during mechanical thrombectomy for acute ischemic stroke. J Neurosurg 2014;121(4):995–8.
  • [15] Chitsaz A, Nejat A, Nouri R. Three-dimensional numerical simulations of aspiration process: evaluation of two penumbra aspiration catheters performance. Artif Organs 2018;42(12):E406–19.
  • [16] Talayero C, Romero G, Pearce G, Wong J. Numerical modelling of blood clot extraction by aspiration thrombectomy. Evaluation of aspiration catheter geometry. J Biomech 2019;94:193–201.
  • [17] Weafer FM, Duffy S, Machado I, Gunning G, Mordasini P, Roche E, et al. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs. J Neurointerv Surg 2019;11(9):891–7.
  • [18] Luraghi G, Cahalane RME, van de Ven E, Overschie SCM, Gijsen FJH, Akyildiz AC. In vitro and in silico modeling of endovascular stroke treatments for acute ischemic stroke. J Biomech 2021;127:110693.
  • [19] Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg 2010;40 (2):176–85.
  • [20] Domagała Z, Stępak H, Drapikowski P, Kociemba A, Pyda M, Karmelita-Katulska K, et al. Geometric verification of the validity of finite element method analysis of abdominal aortic aneurysms based on magnetic resonance imaging. Biocybernet Biomed Eng 2018;38(3):544–55.
  • [21] Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybernet Biomed Eng 2016;36(1):145–56.
  • [22] Luraghi G, Rodriguez Matas JF, Dubini G, Berti F, Bridio S, Duffy S, et al. Applicability assessment of a stent-retriever thrombectomy finite-element model. Interface Focus 2021;11 (1):20190123.
  • [23] Fereidoonnezhad B, Dwivedi A, Johnson S, McCarthy R, McGarry P. Blood clot fracture properties are dependent on red blood cell and fibrin content. Acta Biomater 2021;127:213–28.
  • [24] Luraghi G, Bridio S, Rodriguez Matas JF, Dubini G, Boodt N, Gijsen FJH, et al. The first virtual patient-specific thrombectomy procedure. J Biomech 2021;126:110622.
  • [25] Chueh JY, Wakhloo AK, Hendricks GH, Silva CF, Weaver JP, Gounis MJ. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. AJNR Am J Neuroradiol 2011;32(7):1237–44.
  • [26] Liu Y, Reddy AS, Cockrum J, Ajulufoh MC, Zheng Y, Shih AJ, et al. Standardized fabrication method of human-derived emboli with histologic and mechanical quantification for stroke research. J Stroke Cerebrovasc Dis 2020;29(11):105205.
  • [27] Brown AEX, Litvinov RI, Discher DE, Purohit PK, Weisel JW. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 2009;325 (5941):741–4.
  • [28] Liu Y, Zheng Y, Reddy AS, Gebrezgiabhier D, Davis E, Cockrum J, et al. Analysis of human emboli and thrombectomy forces in large-vessel occlusion stroke. J Neurosurg 2020:1–9.
  • [29] Liu W, Carlisle CR, Sparks EA, Guthold M. The mechanical properties of single fibrin fibers. J Thromb Haemost 2010;8:1030–6.
  • [30] Johnson S, McCarthy R, Gilvarry M, McHugh PE, McGarry JP. Investigating the mechanical behavior of clot analogues through experimental and computational analysis. Ann Biomed Eng 2021;49(1):420–31.
  • [31] Sugerman GP, Parekh SH, Rausch MK. Nonlinear, dissipative phenomena in whole blood clot mechanics. Soft Matter 2020;16(43):9908–16.
  • [32] Tashiro K, Shobayashi Y, Ota I, Hotta A. Finite element analysis of blood clots based on the nonlinear visco-hyperelastic model. Biophys J 2021;120(20):4547–56.
  • [33] Baek J-H, Kim BM, Heo JH, Nam HS, Kim YD, Park H, et al. Number of stent retriever passes associated with futile recanalization in acute stroke. Stroke 2018;49(9):2088–95.
  • [34] Tonetti DA, Desai SM, Casillo S, Stone J, Brown M, Jankowitz B, et al. Successful reperfusion, rather than number of passes, predicts clinical outcome after mechanical thrombectomy. J Neurointerv Surg 2020;12(6):548–51.
  • [35] Kharouba R, Gavriliuc P, Yaghmour NE, Gomori JM, Cohen JE, Leker RR. Number of stentriever passes and outcome after thrombectomy in stroke. J Neuroradiol 2019;46 (5):327–30.
  • [36] Diani J, Fayolle B, Gilormini P. A review on the Mullins effect. Eur Polym J 2009;45(3):601–12.
  • [37] Rausch MK, Sugerman GP, Kakaletsis S, Dortdivanlioglu B. Hyper-viscoelastic damage modeling of whole blood clot under large deformation. Biomech Model Mechanobiol 2021;20(5):1645–57.
  • [38] Shi W, Liu G, Chen Z. Effects of the bulk compressibility on rubber isolator’s compressive behaviors. Adv Mech Eng 2017;9(5).
  • [39] Simo JC. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput Methods Appl Mech Eng 1987;60(2):153–73.
  • [40] Fereidoonnezhad B, Naghdabadi R, Holzapfel GA. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping. J Mech Behav Biomed Mater 2016;61:600–16.
  • [41] Miehe C. Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur J Mech, A/Solids 1995;14:697–720.
  • [42] Maher E, Creane A, Sultan S, Hynes N, Lally C, Kelly DJ. Inelasticity of human carotid atherosclerotic plaque. Ann Biomed Eng 2011;39(9):2445–55.
  • [43] Holzapfel GA. Nonlinear solid mechanics. A Continuum Approach for Engineering. Chichester: Wiley; 2000.
  • [44] Duffy S, Farrell M, McArdle K, Thornton J, Vale D, Rainsford E, et al. Novel methodology to replicate clot analogs with diverse composition in acute ischemic stroke. J Neurointerv Surg 2017;9(5):486–91.
  • [45] Mousavi J. S. SM, Faghihi D, Sommer K, Bhurwani MMS, Patel TR, Santo B, et al. Realistic computer modelling of stent retriever thrombectomy: a hybrid finite-element analysis-smoothed particle hydrodynamics model. J R Soc Interface 2021;18(185).
  • [46] Tanaka Y, Kanoko Y, Yokoyama T, Nakaya K. Experimental validation of pullout resistance for stent retrievers and aspiration catheters. J Neuroendovasc Ther 2022;16(9):446–51.
  • [47] van der Marel K, Chueh J-Y, Brooks OW, King RM, Marosfoi MG, Langan ET, et al. Quantitative assessment of device-clot interaction for stent retriever thrombectomy. J Neurointerv Surg 2016;8(12):1278–82.
  • [48] Bergstrom J. Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 1998;46(5):931–54.
  • [49] Gralla J, Schroth G, Remonda L, Fleischmann A, Fandino J, Slotboom J, et al. A dedicated animal model for mechanical thrombectomy in acute stroke. AJNR Am J Neuroradiol 2006;27:1357–61.
  • [50] Gralla J, Schroth G, Remonda L, Nedeltchev K, Slotboom J, Brekenfeld C. Mechanical thrombectomy for acute ischemic stroke: thrombus-device interaction, efficiency, and complications in vivo. Stroke 2006;37(12):3019–24.
  • [51] Luo ZH, Chung A, Choi G, Lin YH, Pang H, Uchida BT, et al. Iodine based radiopacity of experimental blood clots for testing of mechanical thrombectomy devices. Radiol Oncol 2013;47(1).
  • [52] Weisel JW. The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 2004;112(2-3):267–76.
  • [53] Kim OV, Litvinov RI, Weisel JW, Alber MS. Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials 2014;35(25):6739–49.
  • [54] Staessens S, Denorme F, Francois O, Desender L, Dewaele T, Vanacker P, et al. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica 2020;105(2):498–507.
  • [55] Kim OV, Litvinov RI, Alber MS, Weisel JW. Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat Commun 2017;8:1274.
  • [56] Johnson S, Chueh J, Gounis MJ, McCarthy R, McGarry JP, McHugh PE, et al. Mechanical behavior of in vitro blood clots and the implications for acute ischemic stroke treatment. J Neurointerv Surg 2020;12(9):853–7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb19818a-2385-4961-9e12-91d701f3c356
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.