PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uncertainty of the conversion function caused by systematic effects in measurements of input and output quantities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an evaluation with the Type A and B methods for standard uncertainties of coefficients of a polynomial function of order 𝑘 determined by 𝑛 points obtained by measurement of input and output quantities. A method for deriving a posteriori distributions of function coefficients based on the transformation of estimator distributions without assuming any a priori distributions is presented. It was emphasized that since the correct values of the standard uncertainty of type A depend on the √(n-k-3) and not on the √(n-k-1), therefore, with a small number of measurement points, the use of the classical approach leads to a significant underestimation of uncertainty. The relationships for direct evaluation with the type B method of uncertainties caused by uncorrected systematic additive (offset error) and multiplicative (gain error) effects in the measurements of both input and output quantities are derived. These standard uncertainties are determined on the basis of the manufacturers’ declared values of the maximum permissible errors of the measuring instruments used. A Monte Carlo experiment was carried out to verify the uncertainties of the coefficients and quadratic function, the results of which fully confirmed the results obtained analytically.
Rocznik
Strony
581--600
Opis fizyczny
Bibliogr. 30 poz., tab., wykr., wzory
Twórcy
  • Rzeszow University of Technology, Faculty of Electrical and Computer Engineering, Department of Metrology and Diagnostic Systems, Wincentego Pola, 2A, 35-959 Rzeszow, Poland
  • Lviv Polytechnic National University, Institute of Computer Technologies, Automation and Metrology, Department of Information Measuring Technology, Bandera str., 12, 79013 Lviv, Ukraine
Bibliografia
  • [1] Meijer, G. (Ed.). (2008). Smart sensor systems. John Wiley & Sons.
  • [2] Doebelin, E. O. (1990). Measurement systems. Application and design. McGraw-Hill Publish.
  • [3] Piotrowski, J. (1992). Theory of physical and technical measurement. Elsevier.
  • [4] Islam, T., & Mukhopadhyay, S. C. (2019). Linearization of the sensors characteristics: A review. International Journal on Smart Sensing and Intelligent Systems, 12(1), 1-21. https://doi.org/10.21307/ijssis-2019-007
  • [5] Tomczyk, K. (2016). Problems in modelling charge output accelerometers. Metrology and Measurement Systems, 23(4), 645-659. https://doi.org/10.1515/mms-2016-0045
  • [6] Hajiyev, C. (2016). Sensor calibration design based on D-optimality criterion. Metrology and Measurement Systems, 23(3), 413-424. https://doi.org/10.1515/mms-2016-0029
  • [7] Lira, I., & Grientschnig, D. (2017). Error-in-variables models in calibration. Metrologia, 54(6), S133. https://doi.org/10.1088/1681-7575/aa8f02
  • [8] Zakharov, I., Neyezhmakov, P., Semenikhin, V., & Warsza, Z. L. (2022). Measurement Uncertainty Evaluation of Parameters Describing the Calibrated Curves. In Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques (pp. 391-398). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-03502-9_38
  • [9] Sachin Date. (2022). Time Series Analysis, Regression and Forecasting - With tutorials in Python. http://timeseriesreasoning.com
  • [10] Silva, M. A., Amado, C., Ribeiro, Á., & Loureiro, D. (2022). Uncertainty evaluation in time-dependent measurements. Measurement, 196, 111196. https://doi.org/10.1016/j.measurement.2022.111196
  • [11] Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool, Second Edition. Springer-Verlag.
  • [12] Draper, N. R., & Smith, H. (1998). Applied regression analysis. John Wiley & Sons.
  • [13] Kendall, M. G., & Stuart, A. (1966). The advanced theory of statistics. Inference and realationship. Second Edition. Chares Griffin and Company Limited.
  • [14] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (JCGM 100:2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
  • [15] Chunovkina, A., & Stepanov, A. (2019, May). Estimation of linear regression confidence bands in case of correlated noise. In 2019 12th International Conference on Measurement (pp. 58-61). IEEE. https://doi.org/10.23919/MEASUREMENT47340.2019.8779916
  • [16] Warsza, Z. L., & Puchalski, J. (2021). Uncertainty bands of the regression line for autocorrelated data of dependent variable Y. In Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques (pp. 364-386). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-74893-7_33
  • [17] Klauenberg, K., Martens, S., Bošnjaković, A., Cox, M. G., van der Veen, A. M., & Elster, C. (2022). The GUM perspective on straight-line errors-in-variables regression. Measurement, 187, 110340. https://doi.org/10.1016/j.measurement.2021.110340
  • [18] Puchalski, J. G. (2021). A new algorithm for generalization of least square method for straight line regression in Cartesian system for fully correlated both coordinates. International Journal of Automation, Artificial Intelligence and Machine Learning, 2(2), 20-54.
  • [19] Forbes, A. B. (2009). Parameter estimation based on least-squares methods. In F. Pavese and A. B. Forbes (Eds.), Data modeling for metrology and testing in measurement science. Birkauser-Boston. https://link.springer.com/chapter/10.1007/978-0-8176-4804-6_5
  • [20] Warsza Z. L., & Puchalski, J. (2021). Uncertainty Bands of the Regression Line for Data with Type A and Type B Uncertainties of Dependent Variable Y. In R. Szewczyk et al. (Eds.), Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques (vol. 1390, pp. 342-363). Springer. https://doi.org/10.1007/978-3-030-74893-7_32
  • [21] Kacker, R., & Jones, A. (2003). On use of Bayesian statistics to make the Guide to the Expression of Uncertainty in Measurement consistent. Metrologia, 40(5), 235. https://doi.org/10.1088/0026-1394/40/5/305
  • [22] Weise, K., & Woger, W. (1993). A Bayesian theory of measurement uncertainty. Measurement Science and Technology, 4(1), 1. https://doi.org/10.1088/0957-0233/4/1/001
  • [23] Bich, W., Cox, M., & Michotte, C. (2016). Towards a new GUM - an update. Metrologia, 53(5), S149. https://doi.org/10.1088/0026-1394/53/5/149
  • [24] Cox, M., & Shirono, K. (2017). Informative Bayesian Type A uncertainty evaluation, especially applicable to a small number of observations. Metrologia, 54(5), 642. https://doi.org/10.1088/1681-7575/aa787f
  • [25] Jeffreys H., (1983). Theory of probability (3rd edition). Oxford University Press.
  • [26] Dorozhovets, M. (2020). Forward and inverse problems of Type A uncertainty evaluation. Measurement, 165, 108072. https://doi.org/10.1016/j.measurement.2020.108072
  • [27] Evans, M., Hastings, N., & Peacock, B. (2000). Statistical Distributions 3rd Edition. Wiley.
  • [28] Pollard, J. H. (1977). Handbook of Numerical and Statistical Techniques. Cambridge University Press.
  • [29] Taylor, J. R. (1982). An introduction to error analysis. University Science Books Mill Valley.
  • [30] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Supplement 1 to the Guide to the Expression of Uncertainty in Measurement’ - propagation of distributions using a Monte Carlo method.
Uwagi
1. This publication is supported by Polish Ministry of Education and Science under the program “Regional Initiative of Excellence” in 2019-2023 (project number 027/RID/2018/19.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb1568ca-3c36-4542-b56c-c187c4d7c5fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.