PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tool-assisted surrogate selection for simulation models in energy systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
EN
Abstrakty
EN
Surrogate models have proved to be a suitable replacement for complex simulation models in various applications. Runtime considerations, complexity reduction and privacy concerns play a role in the decision to use a surrogate model. The choice of an appropriate surrogate model though is often tedious and largely dependent on the individual model properties. A tool can help to facilitate this process. To this end, we present a surrogate modeling process supporting tool that simplifies the process of generation and application of surrogate models in a co-simulation framework. We evaluate the tool in our application context, energy system co-simulation, and apply it to different simulation models from that domain with a focus on decentralized energy units.
Rocznik
Tom
Strony
185--192
Opis fizyczny
Bibliogr. 23 poz., tab., wz., wykr., rys.
Twórcy
  • OFFIS – Institute for Information Technology, Oldenburg, Germany
autor
  • OFFIS – Institute for Information Technology, Oldenburg, Germany
  • OFFIS – Institute for Information Technology, Oldenburg, Germany
  • Leibniz University Hannover, Germany
  • OFFIS – Institute for Information Technology, Oldenburg, Germany
Bibliografia
  • 1. M. Blank, T. Breithaupt, J. Bremer, A. Dammasch, S. Garske, T. Klingenberg, S. Koch, O. Lünsdorf, A. Niesse, S. Scherfke, L. Hofmann, and M. Sonnenschein, Smart Nord Final Report. Uni Hannover, 4 2015, pp. 21–30.
  • 2. M. Blank, M. Gandor, A. Niesse, S. Scherfke, S. Lehnhoff, and M. Sonnenschein, “Regionally-specific scenarios for smart grid simulations,” in 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG2015). IEEE, 5 2015, pp. 250–256. [Online]. Available: http://dx.doi.org/10.1109/PowerEng.2015.7266328
  • 3. J. P. Kleijnen, Design and Analysis of Simulation Experiments. Springer International Publishing, 2015. [Online]. Available: https://doi.org/10.1007%2F978-3-319-18087-8
  • 4. R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 2016.
  • 5. A. I. J. Forrester, A. Sóbester, and A. Keane, Engineering Design via Surrogate Modelling - A Practical Guide. Wiley, 2008.
  • 6. T. Simpson, J. Poplinski, P. N. Koch, and J. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Engineering with Computers, vol. 17, no. 2, pp. 129–150, jul 2001. [Online]. Available: https://doi.org/10.1007%2Fpl00007198
  • 7. D. Gorissen, I. Couckuyt, E. Laermans, and T. Dhaene, “Multiobjective global surrogate modeling, dealing with the 5-percent problem,” Engineering with Computers, vol. 26, no. 1, pp. 81–98, aug 2009. [Online]. Available: https://doi.org/10.1007%2Fs00366-009-0138-1
  • 8. A. Mehmani, S. Chowdhury, C. Meinrenken, and A. Messac, “Concurrent surrogate model selection (COSMOS): optimizing model type, kernel function, and hyper-parameters,” Structural and Multidisciplinary Optimization, vol. 57, no. 3, pp. 1093–1114, sep 2017. [Online]. Available: https://doi.org/10.1007%2Fs00158-017-1797-y
  • 9. I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016. [Online]. Available: https://doi.org/10.1016%2Fb978-0-12-804291-5.00024-6
  • 10. S. Koziel, S. Ogurtsov, and L. Leifsson, Surrogate-Based Modeling and Optimization. Springer New York, 2013. [Online]. Available: https://doi.org/10.1007/978-1-4614-7551-4
  • 11. R. Pinto, R. J. Bessa, and M. A. Matos, “Surrogate model of multiperiod flexibility from a home energy management system,” CoRR, abs/1703.08825, 2017.
  • 12. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. Available: http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
  • 13. K. Siebertz, D. van Bebber, and T. Hochkirchen, Statistische Versuchsplanung - Design of Experiments (DoE). Springer, 2017. [Online]. Available: https://doi.org/10.1007/978-3-662-55743-3
  • 14. C. Lemieux, Monte carlo and quasi-monte carlo sampling. Springer Science & Business Media, 2009. [Online]. Available: https://doi.org/10.1007/978-0-387-78165-5
  • 15. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2009.
  • 16. L. Yang, S. Liu, S. Tsoka, and L. G. Papageorgiou, “Mathematical programming for piecewise linear regression analysis,” Expert systems with applications, vol. 44, pp. 156–167, 2016.
  • 17. W. Ertel, Grundkurs Künstliche Intelligenz - Eine praxisorientierte Einführung. Springer Vieweg, 2013. [Online]. Available: https://doi.org/10.1007/978-3-658-13549-2
  • 18. L. Samaniego and K. Schulz, “Supervised classification of agricultural land cover using a modified k-NN technique (MNN) and landsat remote sensing imagery,” Remote Sensing, vol. 1, no. 4, pp. 875–895, nov 2009. [Online]. Available: https://doi.org/10.3390%2Frs1040875
  • 19. G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning. Springer, 2013, vol. 112.
  • 20. C. Cui, M. Hu, J. D. Weir, and T. Wu, “A recommendation system for meta-modeling: A meta-learning based approach,” Expert Systems with Applications, vol. 46, pp. 33–44, mar 2016. [Online]. Available: https://doi.org/10.1016%2Fj.eswa.2015.10.021
  • 21. K. Markov and T. Matsui, “Music genre and emotion recognition using gaussian processes,” IEEE Access, vol. 2, pp. 688–697, 2014. [Online]. Available: https://doi.org/10.1109/ACCESS.2014.2333095
  • 22. C. Hultquist, G. Chen, and K. Zhao, “A comparison of gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests,” Remote Sensing Letters, vol. 5, no. 8, pp. 723–732, aug 2014. [Online]. Available: https://doi.org/10.1080%2F2150704x.2014.963733
  • 23. J. V. Tu, “Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes,” Journal of Clinical Epidemiology, vol. 49, no. 11, pp. 1225–1231, nov 1996. [Online]. Available: https://doi.org/10.1016%2Fs0895-4356%2896%2900002-9
Uwagi
1. This work is supported by the European Community’s Horizon 2020 Program (H2020/2014-2020) under project “ERIGrid” (Grant Agreement No. 654113).
2. Track 1: Artificial Intelligence and Applications
3. Technical Session: 7th International Workshop on Smart Energy Networks & Multi-Agent Systems
4. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb0d6d2c-3805-4080-b7ed-383d6fa4c588
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.