PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short review on atmospheric aerosols source apportionment methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Appropriate understanding of particulate matter emission sources is required to properly establish the policies aiming at the aerosols emitters’ elimi nation. The article provides a short review on atmospheric aerosols source apportionment methods using three computing models.
Rocznik
Strony
7--13
Opis fizyczny
Bibliogr. 50 poz., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Energy and Fuels Department of Coal Chemistry and Environmental Sciences, Av. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels Department of Coal Chemistry and Environmental Sciences, Av. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels Department of Coal Chemistry and Environmental Sciences, Av. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] WHO, „Review of evidence on health aspects of air pollution – REVIHAAP Project Technical Report,” 2013.
  • [2] J. G. Watson, et al., „Source apportionment: findings from the U.S. Supersites Program,” 20080305 DCOM- 20080409 2008.
  • [3] A. Reff, et al., „Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods,” Journal of the Air & Waste Management Association, vol. 57, pp. 146-154, 2007/02/01 2007.
  • [4] C. A. Belis, et al., „Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe,” Atmospheric Environment, vol. 69, pp. 94-108, 4// 2013.
  • [5] R. D. Willis, „Workshop on UNMIX and PMF as applied to PM2.5,” US Environmental Protection Agency, Research Triangle Park, NC 2000.
  • [6] P. K. Hopke, Receptor Modeling in Environmental Chemistry. Wiley, New York, 1985.
  • [7] P. K. Hopke, „Proceedings of the Mathematics in Chemistry ConferenceAn introduction to receptor modeling,” Chemometrics and Intelligent Laboratory Systems, vol. 10, pp. 21-43, 1991/02/01 1991.
  • [8] M. Viana, et al., „Source apportionment of particulate matter in Europe: A review of methods and results,” Journal of Aerosol Science, vol. 39, pp. 827-849, 10// 2008.
  • [9] M. Viana, et al., „Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area,” Atmospheric Environment, vol. 42, pp. 3820-3832, 5// 2008.
  • [10] C. A. Belis, et al., „European Guide on with Receptor Models Air Pollution Source Apportionment „ Joint Research Centre of the European Commission, Luxembourg: Publications Office of the European Union EUR 26080 EN, 2014.
  • [11] J. G. Watson, et al., „Receptor modeling application framework for particle source apportionment,” Chemosphere, vol. 49, pp. 1093-136, Dec 2002.
  • [12] A. E. Joseph, et al., „Chemical Characterization and Mass Closure of Fine Aerosol for Different Land Use Patterns in Mumbai City „ Aerosol and Air Quality Research, vol. 12, pp. 61-72, 2011.
  • [13] E. Terzi, et al., „Chemical composition and mass closure of ambient PM10 at urban sites,” Atmospheric Environment, vol. 44, pp. 2231-2239, 6// 2010.
  • [14] M. Sillanpää, et al., „Chemical composition and mass closure of particulate matter at six urban sites in Europe,” Atmospheric Environment, vol. 40, Supplement 2, pp. 212-223, // 2006.
  • [15] G. Wu, et al., „Chemical composition, mass closure and sources of atmospheric PM10 from industrial sites in Shenzhen, China,” Journal of Environmental Sciences, vol. 25, pp. 1626- 1635, 8/1/ 2013.
  • [16] M. Viana, et al., „Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies,” Atmospheric Environment, vol. 41, pp. 315-326, 1// 2007.
  • [17] K. Styszko, et al., unpublished.
  • [18] J. Yin, et al., „Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites,” Atmospheric Environment, vol. 42, pp. 980-988, 2// 2008.
  • [19] J.-P. Putaud, et al., „A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe,” Atmospheric Environment, vol. 38, pp. 2579-2595, 5// 2004.
  • [20] B. J. Turpin, et al., „Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass,” Aerosol Science and Technology, vol. 35, pp. 602-610, 2001/01/01 2001.
  • [21] J. C. Chow, et al., „Mass reconstruction methods for PM(2.5): a review,” Air Quality, Atmosphere, & Health, vol. 8, pp. 243- 263, 2015.
  • [22] W. H. White, et al., „On the nature and origins of visibilityreducing aerosols in the los angeles air basin,” Atmospheric Environment (1967), vol. 11, pp. 803-812, // 1977.
  • [23] J. H. Seinfeld, et al., Atmospheric chemistry and physics: from air pollution to climate change: John Wiley & Sons, 2012.
  • [24] B. Mason, „Geochemistry and meteorites,” Geochimica et Cosmochimica Acta, vol. 30, pp. 365-374, 4// 1966.
  • [25] K. Ram, et al., „Carbonaceous and Secondary Inorganic Aerosols during Wintertime Fog and Haze over Urban Sites in the Indo-Gangetic Plain,” Aerosol and Air Quality Research, vol. 12, pp. 359–370, 2012.
  • [26] A. A. Frossard, et al., „Removal of Sea Salt Hydrate Water from Seawater-Derived Samples by Dehydration,” Environmental Science & Technology, vol. 46, pp. 13326-13333, 2012/12/18 2012.
  • [27] F. Marenco, et al., „Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: Source apportionment and transport mechanisms,” Journal of Geophysical Research: Atmospheres, vol. 111, pp. n/a-n/a, 2006.
  • [28] W. C. Malm, et al., „Spatial and seasonal trends in particle concentration and optical extinction in the United States,” Journal of Geophysical Research: Atmospheres, vol. 99, pp. 1347-1370, 1994.
  • [29] X. Querol, et al., „PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain,” Atmospheric Environment, vol. 35, pp. 6407-6419, 12// 2001.
  • [30] M. T. Cheng, et al., „Characteristics of aerosols collected in central Taiwan during an Asian dust event in spring 2000,” Chemosphere, vol. 61, pp. 1439-1450, 12// 2005.
  • [31] W. Rogula-Kozłowska, „Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content,” Air Quality, Atmosphere & Health, pp. 1-18, 2015/07/15 2015.
  • [32] P. Yan, et al., „Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China,” Atmospheric Environment, vol. 60, pp. 121-131, 12// 2012.
  • [33] P. Paatero, „Least squares formulation of robust non-negative factor analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 37, pp. 23-35, 5// 1997.
  • [34] P. Paatero, et al., „Analysis of different modes of factor analysis as least squares fit problems,” Chemometrics and Intelligent Laboratory Systems, vol. 18, pp. 183-194, 2// 1993.
  • [35] P. Paatero, et al., „Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values,” Environmetrics, vol. 5, pp. 111-126, 1994.
  • [36] W. Zhao, et al., „Source apportionment for ambient particles in the San Gorgonio wilderness,” Atmospheric Environment, vol. 38, pp. 5901-5910, 11// 2004.
  • [37] Y. Wang, et al., „Source apportionment of airborne particulate matter using inorganic and organic species as tracers,” Atmospheric Environment, vol. 55, pp. 525-532, 8// 2012.
  • [38] S. Wagener, et al., „Source apportionment of organic compounds in Berlin using positive matrix factorization — Assessing the impact of biogenic aerosol and biomass burning on urban particulate matter,” Science of The Total Environment, vol. 435–436, pp. 392-401, 10/1/ 2012.
  • [39] F. Mazzei, et al., „Characterization of particulate matter sources in an urban environment,” Science of The Total Environment, vol. 401, pp. 81-89, 8/15/ 2008.
  • [40] S. Yatkin, et al., „Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey,” Science of The Total Environment, vol. 390, pp. 109-123, 2/1/ 2008.
  • [41] A. O. M. Carvalho, et al., „Sources of trace elements in fine and coarse particulate matter in a sub-urban and industrial area of the Western European Coast,” Procedia Environmental Sciences, vol. 4, pp. 184-191, // 2011.
  • [42] J. Pražnikar, et al., „Long-term analysis of elemental content in airborne particulate matter by PIXE and positive matrix factorization: Annual trends and seasonal variability during 2003 and 2008,” Atmospheric Environment, vol. 94, pp. 723-733, 9//2014.
  • [43] M. Claeys, et al., „Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide,” Atmospheric Environment, vol. 38, pp. 4093-4098, 8// 2004.
  • [44] P. M. Fine, et al., „Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Wood Types Grown in the Midwestern and Western United States,” Environmental Engineering Science, vol. 21, pp. 387-409, 2004.
  • [45] C. G. Nolte, et al., „Highly Polar Organic Compounds Present in Wood Smoke and in the Ambient Atmosphere,” Environmental Science & Technology, vol. 35, pp. 1912-1919, 2001/05/ 01 2001.
  • [46] W. F. Rogge, et al., „Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations,” Environmental Science & Technology, vol. 25, pp. 1112-1125, 1991/06/01 1991.
  • [47] G. S. Kowalczyk, et al., „Chemical element balances and identification of air pollution sources in Washington, D.C,” Atmospheric Environment (1967), vol. 12, pp. 1143-1153, 1978/01/ 01 1978.
  • [48] J. G. Watson, et al., „Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border,” Science of The Total Environment, vol. 276, pp. 33- 47, 8/10/ 2001.
  • [49] J. C. Chow, et al., „Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study,” Chemosphere, vol. 54, pp. 185-208, 1// 2004.
  • [50] J. G. Watson, et al., „Receptor modeling application framework for particle source apportionment,” Chemosphere, vol. 49, pp. 1093-1136, 12// 2002.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cb046109-b225-4135-9921-14c71a653d02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.