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Abstract. An accurate numerical method is established for matrix inversion. It is shown
theoretically that the scheme possesses the high order of convergence of seven. Subsequently,
the method is taken into account for solving linear systems of equations. The accuracy of the
contributed iterative method is clarified on solving numerical examples when the coefficient
matrices are ill-conditioned. All of the computations are performed on a PC using several
programs written in Mathematica 7.
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1. INTRODUCTION

It is widely known that the solutions of linear systems of equations are sensitive to
the round-off error. For some linear systems a small change in one of the values of the
coefficient matrix or the right-hand side vector causes a large change in the solution
vector. When the solution is highly sensitive to the values of the coefficient matrix A
or the right-hand side constant vector b, the equations are said to be ill-conditioned.
Therefore, we cannot easily rely on the solutions coming out of an ill-conditioned
system.

Ill-conditioned systems pose particular problems when the coefficients are esti-
mated from experimental results [6]. For a system with condition number κ(A) =

‖A‖∞‖A−1‖∞ on its coefficient matrix, one can expect a loss of roughly lg10 κ(A)
decimal places in the accuracy of the solution.

In other words, solving very ill-conditioned linear systems by classical methods
is not usual. The Krylov subspace methods (without preconditioners) [8] and also
the iterative methods of the AOR family, both require a remarkable time to find
a reliable solution. Note that the Accelerated Over Relaxation family or the AOR
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method includes two free parameters, which is the extension of the Successive Over
Relaxation method.

On the other hand, one way is to construct iterative methods of high order of
convergence to find approximate inverses of the ill-conditioned matrices by applying
high floating point arithmetic. Several methods of various orders were proposed for
approximating (rectangular or square) matrix inverses, such as those according to the
minimum residual iterations [1] and the Hotelling-Bodewig algorithm [9].

The Hotelling-Bodewig algorithm is defined as Vn+1 = Vn(2I−AVn), n = 0, 1, . . . ,
where I is the identity matrix.

In 2011, Li et al. in [4] presented the following third-order method

Vn+1 = Vn(3I −AVn(3I −AVn)), n = 0, 1, . . . , (1.1)

and also proposed another cubical method for finding A−1:

Vn+1 =

[
I +

1

4
(I − VnA)(3I − VnA)2

]
Vn, n = 0, 1, . . . . (1.2)

Notice that the iterative method (1.1) can also be found in [3]. As an another
example, Krishnamurthy and Sen suggested the following sixth-order iteration method
[3, 10] for the above purpose

Vn+1 = Vn(2I −AVn)(3I −AVn(3I −AVn))(I −AVn(I −AVn)), (1.3)

where n = 0, 1, . . .. In what follows, we first present a proof for the method (1.3).

Theorem 1.1. Let A = [aij ]N×N be a nonsingular matrix. If the initial approxi-
mation V0 satisfies ‖I − AV0‖ < 1, then the iterative method (1.3) converges with
sixth-order convergence to A−1.

Proof. Let ‖I −AV0‖ < 1, and E0 = I −AV0. Subsequently En = I −AVn. Then for
(1.3), we have

En+1 = I −AVn+1 =

= I −A(Vn(2I −AVn)(3I −AVn(3I −AVn))(I −AVn(I −AVn))) =
= I − (−AVn(−2I +AVn)(3I − 3AVn + (AVn)

2)(I −AVn + (AVn)
2) =

= (I −AVn)6 = (En)
6.

(1.4)

Moreover, since ‖E0‖ < 1, by the relation (1.4) we obtain that

‖En+1‖ ≤ ‖En‖6 ≤ ‖En−1‖6
2

≤ . . . ≤ ‖E0‖6
n+1

, (1.5)

where (1.5) tends to zero when n→∞, that is,

I −AVn → 0,

when n→∞, and thus for (1.3), we attain

Vn → A−1 as n→∞. (1.6)
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Now we show the sixth order of convergence. To do this, we denote en = Vn − A−1,
as the error matrix in the iterative procedure (1.3). We have

A−1 + en+1 = Vn+1 = Vn(2I −AVn)(3I −AVn(3I −AVn))(I −AVn(I −AVn)) =
= (en +A−1)(2I −A(en +A−1))(3I −A(en +A−1)(3I −A(en+
+A−1)))(I −A(en +A−1)(I −A(en +A−1))) =

= −(en +A−1)(Aen − I)(I + (Aen)
2 + (Aen)

4) =

= (en +A−1)(I −Aen + (Aen)
2 − (Aen)

3 + (Aen)
4 − (Aen)

5) =

= A−1 −A5(en)
6,

which yields
en+1 = −A5(en)

6,

and consequently
‖en+1‖ ≤ ‖A‖5‖en‖6. (1.7)

Thus the iteration (1.3) locally converges with sixth order to A−1. This concludes the
proof.

For further reading, we refer the readers to [5, 7]. In this article, in order to work
with very ill-conditioned matrices, we will propose a method for finding A−1 itera-
tively. The theoretical convergence of the method will also be studied.

The rest of the paper is organized as follows. The main contribution of this article
is given in Section 2. Subsequently, the method is examined in Section 3 numerically.
Finally, concluding remarks are presented in Section 4.

2. A HIGH-ORDER METHOD

This section contains a new high order algorithm for finding A−1 numerically. In order
to deal with very ill-conditioned linear systems, or to find robust approximate inverses
of the coefficient matrices, we suggest the following iteration method

Vn+1 =
1

4
Vn(32I +AVn×

× (−113I +AVn(231I +AVn(−301I +AVn(259I +AVn(Wn)))))),
(2.1)

where Wn = −147I + AVn (53I +AVn (−11I +AVn)), for any n = 0, 1, . . ., wherein
I is the identity matrix, and the sequence of iterates {Vn}∞n=0 converges to A−1 for a
good initial guess. Such a guess, V0, will be given in Section 3.

Theorem 2.1. Let A = [aij ]N×N be a nonsingular matrix. If the initial approxima-
tion V0 satisfies

‖I −AV0‖ < 1, (2.2)

then the iterative method (2.1) converges with seventh order to A−1.
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Proof. Let ‖I −AV0‖ < 1, E0 = I −AV0, and En = I −AVn. For (2.1), we have

En+1 = I −AVn+1 =

= I −A
[1
4
Vn(32I +AVn(−113I +AVn(231I +AVn(−301I+

+AVn(259I +AVn(−147I +AVn(53I +AVn(−11I +AVn))))))))
]
=

=
1

4
AVn(32I − 113AVn + 231(AVn)

2 − 301(AVn)
3 + 259(AVn)

4−

− 147(AVn)
5 + 53(AVn)

6 − 11(AVn)
7 + (AVn)

8) =

= −1

4
(−2I +AVn)

2(−I +AVn)
7 =

1

4
(I + (I −AVn))2(I −AVn)7 =

=
1

4
(I + 2En + (En)

2)(En)
7 =

1

4
(E7

n + 2E8
n + E9

n).

Thus, we obtain

‖En+1‖ =
1

4
(‖E7

n + 2E8
n + E9

n‖) ≤
1

4
(‖E7

n‖+ 2‖E8
n‖+ ‖E9

n‖). (2.3)

Moreover, since ‖E0‖ < 1, and ‖E1‖ ≤ ‖E0‖7 < 1, hence we get that (we consider
‖En‖ < 1)

‖En+1‖ ≤ ‖En‖7 ≤ ‖En−1‖7
2

≤ . . . ≤ ‖E0‖7
n+1

< 1, (2.4)

where (2.4) tends to zero when n→∞, that is,

I −AVn → 0,

when n→∞, and thus for (2.1), we attain

Vn → A−1 as n→∞. (2.5)

Now we show the seventh order of convergence. To do this, we denote
en = Vn −A−1, as the error matrix in the iterative procedure (2.1). We have

I −AVn+1 =
1

4
[(I −AVn)7 + 2(I −AVn)8 + (I −AVn)9]. (2.6)

We can now easily obtain

A(A−1 − Vn+1) =
1

4
[A7(A−1 − Vn)7 + 2A8(A−1 − Vn)8 +A9(A−1 − Vn)9], (2.7)

and

−A(Vn+1 −A−1) =
1

4
[−A7(Vn −A−1)7 + 2A8(Vn −A−1)8 −A9(Vn −A−1)9]. (2.8)

Simplifying (2.8) results in

en+1 = −1

4
[−A6(en)

7 + 2A7(en)
8 −A8(en)

9], (2.9)



A new method for solving ill-conditioned linear systems 341

which, by taking the norm of both sides, yields

‖en+1‖ ≤
1

4
[‖A6e7n‖+ 2‖A7e8n‖+ ‖A8e9n‖], (2.10)

and consequently

‖en+1‖ ≤
(
1

4
[‖A‖6 + 2‖A‖7‖en‖+ ‖A‖8‖en‖2]

)
‖en‖7. (2.11)

Thus, the iteration (2.1) locally converges to A−1 with at least seventh order of
convergence based on the error inequality (2.11). This concludes the proof.

3. COMPUTATIONAL TESTS

In this section, experiments are presented to demonstrate the capability of the sug-
gested method. For solving a square real linear system of equations of the general form
Ax = b, wherein A ∈ RN×N , we can now propose the following efficient algorithm

xn+1 = Vn+1b while n = 0, 1, . . . .

The programming package Mathematica 7 [11] has been used in this section.
For numerical comparisons, we have used the Hotelling-Bodewig algorithm denoted
by (HBA), the method (1.1) which is also known as Chebyshev’s method, and the
sixth-order method of Krishnamurthy and Sen (1.3) and the new accurate algorithm
(2.1). We use 256 digits floating point arithmetic in our calculations using the com-
mand

SetAccuracy [expr,256]

to keep the effect of round-off error at minimum.
We here take into account the very efficient way of producing V0 as given by

Codevico et al. in [2] as follows:

V0 =
AT

‖A‖1‖A‖∞
. (3.1)

This choice will easily provide guesses enough close to the A−1 in order to preserve
the convergence order. However, another way to do this is

V0 =
AT

Trace(AAT )
. (3.2)

Test Problem. Consider the linear system Hx = b, wherein H is the Hilbert matrix
defined by HN×N = [hi,j = 1

i+j−1 ]. The right hand side vector will be considered as
b = (10, 10, . . . , 10)T in this paper. We use Hilbert matrices of various orders as test
problems in this section.
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Table 1. The condition number of different Hilbert matrices

Order of Hilbert matrix 10 15 20

Condition number 3.5× 1013 1.5× 1021 6.2× 1028

Table 1 simply shows that H is getting ill-conditioned by increasing the dimension
of the matrix, and subsequently the system cannot be solved easily. Note that the
condition numbers in Table 1 have been obtained using the command

N[LinearAlgebra‘MatrixConditionNumber[HilbertMatrix[n]], 5]

in Mathematica. We expect to find robust approximations of the Hilbert inverses
in less iterations by high-order iterative methods.

Table 2 shows the number of iterations for different methods in order to reveal the
efficiency of the proposed iteration. In Table 2, IN and RN stand for iteration number
and residual norm for the solution of the linear system, respectively. Note that in this
test problem, we have used an initial value constructed by (3.1).

There is a clear reduction in computational steps for the proposed method (2.1) in
contrast to the other existing well-known methods of various orders in the literature
based on Table 2.

Table 2. Results of comparisons for the Test Problem

Methods HBA (1.1) (1.3) (2.1)

Order of convergence 2 3 6 7

Hilbert mat. dimension is 10
IN 96 61 38 33
RN 1.4× 10−53 1.4× 10−82 2.8× 10−230 1.8× 10−250

Hilbert mat. dimension is 15
IN 146 93 57 50
RN 2.2× 10−41 5.5× 10−94 1.3× 10−90 5.7× 10−250

Hilbert mat. dimension is 20
IN 197 124 76 66
RN 7.9× 10−54 1.1× 10−42 4.8× 10−41 3.6× 10−79
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4. SUMMARY

Iterative methods are often effective especially for large scale systems with sparsity
and Hotelling-Bodewig-type methods for well-conditioned linear systems in double
precision arithmetic and ill-conditioned ones by using high precision floating points.
The Hotelling-Bodewig algorithm is simple to describe and to analyze, and is numer-
ically stable for nonsingular input matrices. This was the idea of developing iterative
methods of this type for the solution of linear systems.

In this article, we have developed an iterative method in inverse-finding of matri-
ces. Note that such high order iterative methods are efficient for very ill-conditioned
linear systems. We have shown that the suggested method (2.1) reaches the seventh
order of convergence. Moreover, the efficiency of the new scheme was illustrated nu-
merically in Section 3.
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