PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature and humidity monitoring to identify ideal periods for liquefaction on Earth and Mars : data from the High Andes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During an almost two week-long field campaign in the Atacama Desert high altitude region of Ojos del Salado volcano, temperature (T) and relative humidity (RH) values were monitored on the surface and <1-5 cm sized rocks, focusing on the night-time values. The aim was to identify and evaluate potential temporal characteristics of daily T and RH changes, searching for ideal periods for deliquescence that has recently been proposed for Mars. Although the atmospheric pressure on Mars is much lower than on Earth, and the atmosphere is drier in general, the huge daily temperature fluctuation there could produce elevated humidity values at night-time; this aspect has thus been analysed on Earth at a desert location, where because of the high elevation night-time cooling is very strong, just like on Mars. Different nearby surface locations showed the same temporal T/RH characteristics, but evident variations were observed between different days. Strong fluctuations could be observed on 10-20 minute long temporal scales, that might influence the deliquescence process, and should be accounted for in future missions aiming to analyse this process on Mars. Night-time periods were favourable for deliquescence. Among the modelled Mars-relevant salts [CaCl2, Ca(ClO4)2, Mg(ClO4)2, NaCl] the longest durations of possible deliquescence were for CaCl2, Ca(ClO4)2 and Mg(ClO4)2, ~7-12 hours for one day. The duration for deliquescence showed some increase along with the rising elevation, due to the decreasing night-time temperature. Thus despite the low humidity on Mars, the cold nights may cause elevated RH towards deliquescence. The Atacama Desert locations analysed are a useful analogue of the deliquescence process on Mars. Fluctuation in RH was observed in night-time, suggesting that similar variability might be present on Mars, and that should be considered in the future, including in evaluating how fast the microscopic liquid formation progresses. Night-time slope winds expected on Mars might have a strong impact on the local T/RH conditions. A more detailed analysis in the future should focus on identifying and separating regions with and without much of the expected night-time fluctuation.
Słowa kluczowe
Rocznik
Strony
898--914
Opis fizyczny
Bibliogr. 83 poz., fot., rys., tab., wykr.
Twórcy
  • Konkoly Thege Astronomical Institute, MTA Centre for Excellence, Research Centre for Astronomy and Earth Sciences, H-1121 Konkoly Thege 15-17, Budapest, Hungary
  • European Astrobiology Institute, virtual institute hosted by the European Science Foundation
  • Konkoly Thege Astronomical Institute, MTA Centre for Excellence, Research Centre for Astronomy and Earth Sciences, H-1121 Konkoly Thege 15-17, Budapest, Hungary
autor
  • Korall-Print Bt., H-7625, Dr. Majorossy 43. Pecs, Hungary
  • Budapest Institute of Technology and Economics, H-1111 Műegyetem rkp. 3, Budapest, Hungary
Bibliografia
  • 1. Ahumada, A.L., 2002. Periglacial phenomena in the high mountains of northwestern Argentina. South African Journal of Science, 98: 166-170.
  • 2. Ammann, C., Jenny, B., Kammer, K., Messerli, B., 2001. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18-29°S). Palaeogeoraphy Palaeoclimatology Palaeoecology, 172: 313-326.
  • 3. Azócar, G.F, Brenning, A., 2010. Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27-33 S). Permafrost and Periglacial Processes, 21: 42-53.
  • 4. Amundson, R., Barnes, J.D., Ewing, S., Heimsath, A., Chong, G., 2012. The stable isotope composition of halite and sulfate of hyperarid soils and its relation to aqueous transport. Geochimica and Cosmochimica Acta, 99: 271-286.
  • 5. Artieda, O., Davila, A., Wierzchos, J., Buhler, P., Rodríguez Ochoa, R., Carmen Ascaso, J., 2015. Surface evolution of salt-encrusted playas under extreme and continued dryness. Earth Surface Processes and Landforms, 40: 1939-1950.
  • 6. Azócar, G.F., Brenning, A., 2010. Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27-33°S). Permafrost et Periglacial Processes, 21: 42-53.
  • 7. Azua-Bustos, A., Caro Lara, L., Vicuña, R., 2015. Environmental Microbiology Reports, 7: 388-394.
  • 8. Azua-Bustos, A., Fairén, A.G., González-Silva, C., Ascaso, C., Carrizo, D., Fernández-Martínez, M.Á., Fernández-Sampedro, M., García-Descalzo, L., García-Villadangos, M., Martin-Redondo, M.P., Sánchez-García, L., Wierzchos, J., Parro, V., 2018. Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Scientific Reports, 8, id. 16706.
  • 9. Boynton, W.V., Ming, D.W., Kounaves, S.P., Young, S.M.M., Arvidson, R.E., Hecht, M.H., Hoffman, J., Niles, P.B., Hamara, D.K., Quinn, R.C., Smith, P.H., Sutter, B., Catling, D.C., Morris, R.V., 2009. Evidence for calcium carbonate at the Mars Phoenix Landing Site. Science, 335: 61-64.
  • 10. Cabrol, N.A., Grin, E.A., 1999. Distribution, classification, and ages of Martian impact crater lakes. Icarus, 142: 160-172.
  • 11. Catling, D.C., Claire, M.W., Zahnle, K.J., Quinn, R.C., Clark, B.C., Hecht, M.H., Kounaves, S., 2010. Atmospheric origins of perchlorate on Mars and in the Atacama. Journal of Geophysical Research, 115: CiteID E00E11.
  • 12. Chevrier, V.F., Rivera Valentin, E.G., 2012. Formation of recurring slope lineae by liquid brines on present day Mars. Geophysical Research Letters, 39: L21202.
  • 13. Clapperton, C.M., 1994. The Quaternary glaciation of Chile. Revista Chilena de Historia Natural, 67: 369-383.
  • 14. Cobos, D., Corte, A., 1990. Geocryological observations in Ojos del Salado, Central Andes, Lat. 27°. IGCP/UNESCO Project 297, 2nd Meeting, Geocryology of Southern Africa, Rhodes University, Grahamstown.
  • 15. Czechowski, L., Witek, P., Misiura, K., 2013. Dynamical model of rivers on Mars. European Planetary Science Congress, abstract EPSC2013-917.
  • 16. Davila, A.F., Duport, L.G., Melchiorri, R., Jänchen, J., Valea, S., de los Rios, A., Fairén, A.G., Möhlmann, D., McKay, C.P., Ascaso, C., Wierzchos, J., 2010. Hygroscopic salts and the potential for life on Mars. Astrobiology, 10: 617-628.
  • 17. Dundas, C.M., McEwen, A.S., Chojnacki, M., Milazzo, M.P., Byrne, S., McElwaine, J.N., Urso, A., 2017. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nature Geoscience, 10: 903-907.
  • 18. Ehlmann, B.L., Swayze, G.A., Milliken, R.E., Mustard, J.F., Clark, R.N., Murchie, S.L., Breit, G.N., Wray, J.J., Gondet, B., Poulet, F., Carter, J., Calvin, W.M., Benzel, W.M., Seelos, K.D., 2016. Discovery of alunite in Cross crater, Terra Sirenum, Mars: evidence for acidic, sulfurous waters. American Mineralogist, 101: 1527.
  • 19. Farris, H.N., Davila, Al., 2016. Deliquescence-driven brine formation in the Atacama Desert, Chile. 47th Lunar and Planetary Science Conference, abstract 2518.
  • 20. Farris, H.N., Davila, A., 2017. Calcium perchlorate brine formation in the Atacama desert, Chile and implications for liquid water at the surface of Mars. Astrobiology Science Conference, abstract no. 3483.
  • 21. Farris, H.N., Conner, N.B., Chevrier, V.F., Rivera-Valentin, E.G., 2017. Adsorption driven regolith-atmospheric water vapor transfer on Mars: an analysis of Phoenix TECP data. Icarus, 308: 71-75.
  • 22. Fassett, C.I., Head, J.W., 2008. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus, 198: 37-56.
  • 23. Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., Huot, J.-P., 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysícal Research, 104: 24155-24176.
  • 24. Glavin, D.P., Freissinet, C., Miller, K.E., Eigenbrode, J.L., Brunner, A.E., Buch, A., Sutter, B., Archer, P.D., Atreya, S.K., Brinckerhoff, W.B., Cabane, M., Coll, P., Conrad, P.G., Coscia, D., Dworkin, J.P., Franz, H.B., Grotzinger, J.P., Leshin, L.A., Martin, M.G., McKay, C., Ming, D.W., Navarro González, R., Pavlov, A., Steele, A., Summons, R.E., Szopa, C., Teinturier, S., Mahaffy, P.R., 2013. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research, 118: id. 20144.
  • 25. Gough, R.V., Primm, K.M., Rivera-Valentín, E.G., Martinez, G.M., Tolbert, M.A., 2019. Solid-solid hydration and dehydration of Mars-relevant chlorine salts: Implications for Gale Crater and RSL locations. Icarus, 321: 1-13.
  • 26. Gough, R.V., Chevrier, V.F., Baustian, K.J., Wise, M.E., Tolbert, M.A., 2011. Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars. Earth and Planetary Science Letters, 312: 371-377.
  • 27. Gspurning, J., Lazer, R., Sulzer, W., 2006. Regional climate and snow/glacier distribution in Southern Upper Atacama (Ojos del Salado) - an integrated statistical, GIS and RS based approach. Grazer Schriften der Geographie and Raumforschung, 41: 59-70.
  • 28. Hamilton, V.E., Vasavada, A.R., Sebastián, E., Torre Juárez, M., Ramos, M., Armiens, C., Arvidson, R.E., Carrasco, I., Christensen, P.R., De Pablo, M.A., Goetz, W., Gómez-Elvira, J., Lemmon, M.T., Madsen, M.B., Martín-Torres, F.J., Martínez-Frías, J., Molina, A., Palucis, M.C., Rafkin, S.C.R., Richardson, M.I., Yingst, R.A., Zorzano, M.-P., 2014. Observations and prelimínary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysícal Research, 119: 745-770.
  • 29. Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J., DeFlores, L.P., Gospodinova, K., Kapit, J., Smith, P.H., 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science, 325: 64.
  • 30. Heldmann, J.L., Conley, C.A., Brown, A.J., Fletcher, L., Bishop, J.L., McKay, C.P., 2010. Possible liquid water origin for Atacama Desert mudflow and recent gully deposits on Mars. Icarus, 206: 685-690.
  • 31. Jackson, W.A., Böhlke, J.K., Andraski, B.J., Fahlquist, L., Bexfield, L., Eckardt, F.D., Gates, J.B., Davila, A.F., McKay, C.P., Rao, B., Sevanthi, R., Rajagopalan, S., Estrada, N., Sturchio, N., Hatzinger, P.B., Anderson, T.A., Orris, G., Betancourt, J., Stonestrom, D., Latorre, C., Li, Y., Harvey, G.J., 2015. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochimica et Cosmochimica Acta, 164: 502-522.
  • 32. Jackson, W.A., Böhlke, J.K., Andraski, B.J., Fahlquist, L., Bexfield, L., Eckardt, F.D., Gates, J.B., Davila, A.F., McKay, C.P., Rao, B., Sevanthi, R., Rajagopalan, S., Estrada, N., Sturchio, N., Hatzinger, P.B., Anderson, T.A., Orris, G., Betancourt, J., Stonestrom, D., Latorre, C., Li, Y., Harris, J.K., Cousins, C.R., Claire, M.W., 2016. Spectral identification and quantification of salts in the Atacama Desert. Proceedings of the SPIE 10005: id. 100050I.
  • 33. Kate, I.L., 2018. Organic molecules on Mars. Science, 360: 1068-1069.
  • 34. Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J., DeFlores, L.P., Gospodinova, K., Kapit, J., Smith, P.H., 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science, 325: 64.
  • 35. Kereszturi, A., 2019. Unique and potentially Mars relevant flow regime and water sources at a High-Andes Atacama site. Astrobiology, 20: 723-740.
  • 36. Kereszturi, A., Rivera-Valentin, E.G., 2012. Locations of thin liquid water layers on present-day Mars. Icarus, 221: 289-295.
  • 37. Kereszturi, A., Rivera-Valentin, E.G., 2016. Possible water lubricated grain movement in the circum-polar region of Mars. Planetary Space Science, 125: 130-146.
  • 38. Kereszturi, A., Aszalós, J., Heiling, B., Kapui, Zs., Kiraly, Cs., Leél-Össy, Sz., Nagy, B., Pal, B., Skulteti, A., Szalai, Z., 2019. Cold, dry, windy, and UV irradiated: surveying Mars-relevant conditions in Ojos del Salado Volcano (Andes Mountains, Chile). Astrobiology, 20: 677-683.
  • 39. Kounaves, S.P., Hecht, M.H., Kapit, J., Gospodinova, K., DeFlores, L., Quinn, R.C., Boynton, W.V., Clark, B.C., Catling, D.C., Hredzak, P., Ming, D.W., Moore, Q., Shusterman, J., Stroble, S., West, S.J., Young, S.M.M., 2010. Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results. Journal of Geophysical Research, 115: E00E10.
  • 40. Lewis, S.R., 2003. Modelling the martian atmosphere. Astronomy and Geophysics, 44: 4.6-4.14.
  • 41. Losiak, A., Czechowski, L., Velbel, M.A., 2015. Ephemeral liquid water at the surface of the martian North Polar Residual Cap: results of numerical modelling. Icarus, 262: 131-139.
  • 42. Martin-Torres, J., Zorzano, M.-P., 2018. The instrument HABIT (HabitAbility, Brine Irradiation and Temperature) on the ExoMars platform. 42nd COSPAR Scientific Assembly, Abstract id. F3.3-6-18.
  • 43. Martin-Torres, F.J., Zorzano, M.-P., Valentin-Serrano, P., Harri, A.M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Wray, J., Bo Madsen, M., Goetz, W., McEwen, A.S., Hardgrove, C., Renno, N., Chevrier, V.F., Mischna, M., Navarro-Gonzalez, R., Martinez-Frias, J., Conrad, P., McConnochie, T., Cockell, C., Berger, G., Vasavada, A., Sumner, D., Vaniman, D., 2015. Transient liquid water and water activity at Gale Crater on Mars. Nature Geoscience, 8: 357-361.
  • 44. Martinez, G., McConnochie, T., Renno, N., Meslin, P.-Y., Fischer, E., Vicente-Retortillo, A., Borlina, C., Kemppinen, O., Genzer, M., Harri, A.-M., de la Torre-Juárez, M., Zorzano, M.-P., Martin-Torres, J., Bridges, N., Maurice, S., Gasnault, O., Gomez-Elvira, J., Wiens, R., 2016. Diurnal variation of atmospheric water vapor at Gale crater: analysis from ground-based measurements. EGU General Assembly, abstract EPSC2016-9297.
  • 45. Martinez, G.M., Newman, C.N., De Vicente-Retortillo, A., Fischer, E., Renno, N.O., Richardson, M.I, Fairén, A.G., Genzer, M., Guzewich, S.D., Haberle, R.M., Harri, A.M., Kemppinen, O., Lemmon, M.T., Smith, M.D., de la Torre-Juárez, M., Vasavada, A.R., 2017. The modern near-surface Martian climate: a review of in-situ meteorological data from Viking to Curiosity. Space Science Reviews, 212: 295-338.
  • 46. McEwen, A.S., Ojha, L., Dundas, C.M., Mattson, S.S., Byrne, S., Wray, J.J., Cull, S.C., Murchie, S.L., Thomas, N., Gulick, V.C., 2011. Seasonal flows on warm Martian slopes. Science, 333: 740.
  • 47. McKay, C.P., Friedmann, E.I., Gómez-Silva, B., Cáceres-Villanueva, L., Andersen, D.T., Landheim, R., 2003. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El NiZo of 1997-1998. Astrobiology, 3: 393-406.
  • 48. McKay, L., Claire, M., 2016. The presence and distribution of salts as a palaeoprecipitation proxy in Atacama soils. EGU General Assembly, abstract EPSC2016-212.
  • 49. Montgomery, W., Jaramillo, E.A., Royle, S.H., Kounaves, S.P., Schulze-Makuch, D., Sephton, M.A., 2019. Efiects of oxygen-containing salts on the detection of organic biomarkers on Mars and in terrestrial analog soils. Astrobiology, 19: 711-721.
  • 50. Moreno, T., Gibbons, W., 2007. The Geology of Chile. Geological Society London.
  • 51. Möhlmann, D., Thomsen, K., 2011. Properties of cryobrines on Mars. Icarus, 212: 123-130.
  • 52. Nagy, B., Mari, L., Kovács, J., Nemerkényi, Zs., Heiling, Zs., 2014a. Environment changes in the Dry Andes - monitoring research on the Ojos del Salado (in Hungarian). In: HUNGEO 2014 Magyar Földtudományi (eds. T. Cserny, P. Kovács-Pálffy and Á. Krivánné Horváth): 53-62. 1103 szakemberek XII. találkozója. Budapest: Magyarhoni Földtani Társulat.
  • 53. Nagy, B., Mari, L., Kovács, J., Nemerkényi, Zs., Heiling, Zs. 2014b. Data from the subsurface of a high-mountain desert: water and ice on the Ojos del Salado (in Hungarian), Egyetemi Meteorológiai Füzetek - Meteorological Notes of Universities, 25:123-128.
  • 54. Nagy, B., Ignéczi, A., Kovács, J., Szalai, Z., Mari, L., 2019. Shallow ground temperature measurements on the highest volcano of the Earth, the Mt. Ojos del Salado, Arid Andes, Chile. Permafrost and Periglacial Processes, 30: 3-18.
  • 55. Navarro, T., Madeleine, J.-B., Forget, F., Spiga, A., Millour, E., Montmessin, F., Määttänen, A., 2014. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research, 119: 1479-1495.
  • 56. Navarro-González, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., de la Rosa, J., Small, A.M., Quinn, R.C., Grunthaner, F.J., Cáceres, L., Gomez-Silva, B., McKay, C.P., 2003. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302: 1018-1021.
  • 57. Nikolakakos, G., Whiteway, J.A., 2018. Laboratory study of adsorption and deliquescence on the surface of Mars. Icarus, 308: 221-229.
  • 58. Nuding, D.L., Rivera Valentin, E.G., Davis, R.D., Gough, R.V., Chevrier, V.F., Tolbert, M.A., 2014 Deliquescence and efflorescence of calcium perchlorate: An investigation of stable aqueous solutions relevant to Mars. Icarus, 243: 420-428.
  • 59. Oyarzun, C.G., 1987. Inventario de Glaciares de los Andes Chilenos desde los 180 a los 320 de Latitud Sur. Revista de Geografia Norte Grande, 14: 35-48.
  • 60. Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.J., Hanley, J., Massé, M., Chojnacki, M., 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Natural Geoscience, 8: 829-832.
  • 61. Óscar, G.F., 1995. Volcanes de Chile (in Spanish). Instituto Geográfico Militar Year book, Santiago, Chile.
  • 62. Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, T.D., Baldridge, A.M., Christensen, P.R., Tornabene, L.L., Anderson, F.S., 2008. Chloride-bearing materials in the southern highlands of Mars. Science, 319: 1651-1654.
  • 63. Oyarzun, C.G., 1987. Inventario de Glaciares de los Andes Chilenos desde los 180 a los 320 de Latitud Sur. Revista de Geografia Norte Grande, 14: 35-48.
  • 64. Pal, B., Kereszturi, A., 2017. Possibility of microscopic liquid water formation at landing sites on Mars and their observational potential. Icarus, 282: 84-92.
  • 65. Primm, K.M., Gough, R.V., Wong, J., Rivera Valentin, E., Martinez, G.M., Hogancamp, J.V., Archer, P.D., Ming, D.W., Tolbert, M.A., 2018. The effect of Mars relevant soil analogs on the water uptake of magnesium perchlorate and implications for the near surface of Mars. Journal of Geophysical Research, 123: 2076-2088.
  • 66. Reiss, D., Erkeling, G., Bauch, K.E., Hiesinger, H., 2010. Evidence for present day gully activity on the Russell crater dune field, Mars. Geophysical Research Letters, 37: L06203.
  • 67. Renno, N.O., Bos, B.J., Catling, D., Clark, B.C., Drube, L., Fisher, D., Goetz, W., Hviid, S.F., Keller, H.U., Kok, J.F., Kounaves, S.P., Leer, K., Lemmon, M., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C., Mehta, M., Smith, M., Zorzano, M.P., Smith, P.H., Stoker, C., Young, S.M.M., 2009. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. Journal of Geophysical Research, 114: E00E03.
  • 68. Rivera Valentin, E.G., Gough, R.V., Chevrier, V.F., Primm, K.M., Martinez, G.M., Tolbert, M., 2018. Constraining the potential liquid water environment at Gale Crater, Mars. Journal of Geophysical Research, 123: 1156-1167.
  • 69. Smith, M.L., Claire, M.W., Catling, D.C., Zahnle, K.J., 2014. The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. Icarus, 231: 51-64.
  • 70. Stepinski, T.F., Stepinski, A.P., 2005. Morphology of drainage basins as an indicator of climate on early Mars. Journal of Geophysical Research, 110 (E12): CiteID E12S12.
  • 71. Tokano, T., 2005. Water on Mars and Life. Springer.
  • 72. Toner, J.D., Catling, D.C., Light, B., 2014a. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus, 233: 36-47.
  • 73. Toner, J.D., Catling, D.C., Light, B., 2014b. Soluble salts at the Phoenix Lander site, Mars: a reanalysis of the wet chemistry laboratory data. Geochimica et Cosmochimica Acta, 136: 142-168.
  • 74. Toner, J.D., Catling, C.D., Light, B., 2015a. Modeling salt precipitation from brines on Mars: evaporation versus freezing origin for soil salts. Icarus, 250: 451-461.
  • 75. Toner, J.D., Catling, D.C., Light, B., 2015b. A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars. Geochimica et Cosmochimica Acta, 166: 327-343.
  • 76. Toner, J.D., Catling, D.C., Light, B., 2015b. A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars. Geochimica et Cosmochimica Acta, 166: 327-343.
  • 77. Martin-Torres, F.J., Zorzano, M.-P., Valentin-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J., Bo Madsen, M., Goetz, W., McEwen, A.S., Hardgrove, C., Renno, N., Chevrier, V.F., Mischna, M., Navarro-Gonzalez, R., Martinez-Frias, J., Conrad, P., McConnochie, T., Cockell, C., Berger, G., Vasavada, A., Sumner, D., Vaniman, D., 2015. Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8: 357-361.
  • 78. Ullán, A., Zorzano, M.-P., Martin-Torres, J., Valentin-Serrano, P., Kahanpää, H., Harri, A.-M., Gómez-E., J., Navarro, S., 2017. Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater. Icarus, 288: 78-87.
  • 79. van Everdingen, R. ed., 2005. Multi-language glossary of permafrost and related ground-ice terms. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.
  • 80. Weng, M., Millan, M., Zaikova, E., Bevilacqua, J., Johnson, S.S., 2018. Biosignature preservations in gypsum veins and mineral crust of the atacama desert as an analog for Mars. 49th Lunar and Planetary Science Conference, abstract 2286.
  • 81. Wierzchos, J., Davila, A.F., Artieda, O., Cámara-Gallego, B., de los Rios, A., Nealson, K.H., Valea, S., Teresa Garcia-González, M., Ascaso, C., 2013. Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: implications for the search for life on Mars. Icarus, 224: 334-346.
  • 82. Zent, A.P., Hecht, M.H., Hudson, T.L., Wood, S.E., Chevrier, V.F., 2016. A revised calibration function and results for the Phoenix mission TECP relative humidity sensor. Journal of Geophysical Research, 121: 626-651.
  • 83. Zorzano, M.-P., Mateo-Marti, E., Prieto-Ballesteros, O., Osuna, S., Renno, N., 2009. Stability of liquid saline water on present day Mars. Geophysical Research Letters, 36: L20201.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cafc3252-531d-4e0a-be3b-938413511f2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.