PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of Air Condition Energy Consumption by Redundant Energy Gains Modification

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Redukcja zużycia energii przez klimatyzację dzięki modyfikacji nadmiarowych zysków energii
Języki publikacji
EN
Abstrakty
EN
For a selected building in a specific location and conditions encountered, heat gains from sun exposure, resident people, equipment, lighting, and window partitions were calculated depending on the time of day (hourly for a year), the number, and the activity of people in the building. The heat and humidity balance was performed. This allowed the cooling and heating demand to be determined. The air conditioning system was adjusted to the demand. The operation of the system was simulated by showing the loads (hourly for a year). The load flexibility of the air conditioners was presented. Heat gains have been determined and ranked according to which has the greatest influence on the air conditioning load. Solutions were proposed to reduce the heat load in the building. As a result of the research, methods were presented for reducing the energy consumption of air conditioning by modifying the factors causing redundant energy gains.
PL
Dla wybranego budynku w określonej lokalizacji i napotkanych warunkach obliczono zyski ciepła od nasłonecznienia, ludzi, urządzeń, oświetlenia i przez ściany oraz okna, w zależności od pory dnia (co godzinę przez rok), liczby i aktywności osób przebywających w budynku. Przeprowadzono bilans ciepła i wilgotności. Pozwoliło to na określenie zapotrzebowania na chłód i ciepło budynku. Do wyznaczonego zapotrzebowania dostosowano system klimatyzacji. Zasymulowano jego pracę pokazując obciążenia (co godzinę przez rok). Przedstawiono elastyczność obciążenia systemu klimatyzacyjnego. Określono zyski ciepła i uszeregowano je według tego, które mają największy wpływ na obciążenie klimatyzacji. Zaproponowano rozwiązania mające na celu zmniejszenie obciążenia cieplnego budynku. W wyniku badań przedstawiono sposoby zmniejszenia energochłonności klimatyzacji poprzez modyfikację czynników powodujących zbędne zyski energii.
Czasopismo
Rocznik
Tom
Strony
45--51
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering Department of Process and Environmental Engineering Opole University of Technology, Opole
  • Faculty of Mechanical Engineering Department of Process and Environmental Engineering Opole University of Technology, Opole
  • Mechanical Installation Head Designer, Studio Projektowe Spart Instalacje Saniarne sp. z o.o. sp. k., Kalety, Poland
  • Faculty of Engineering, University of Pannonia, Veszprém, Hungary
  • School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland
Bibliografia
  • [1] “DIRECTIVE (EU) 2018/2002 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 amending Directive 2012/27/EU on energy efficiency,” Official Journal of the European Union, 2018.
  • [2] “DIRECTIVE 2012/27/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC,” Official Journal of the European Union, 2012.
  • [3] “COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE, THE COMMITTEE OF THE REGIONS AND THE EUROPEAN INVESTMENT BANK A Framework Strategy for a Resilient Energy Union with a Forward-Looking C.”
  • [4] M. Mrówczyńska, M. Skiba, A. Bazan-Krzywoszańska, and M. Sztubecka, “Household standards and socio-economic aspects as a factor determining energy consumption in the city,” Appl. Energy, vol. 264, p. 114680, Apr. 2020, https://doi.org/10.1016/J.APENERGY.2020.114680.
  • [5] X. J. Luo and L. O. Oyedele, “Life cycle optimisation of building retrofitting considering climate change effects,” Energy Build., vol. 258, p. 111830, Mar. 2022, https://doi.org/10.1016/J.ENBUILD.2022.111830.
  • [6] G. M. Cappucci, V. Ruffini, V. Barbieri, C. Siligardi, and A. M. Ferrari, “Life cycle assessment of wheat husk based agro-concrete block,” J. Clean. Prod., vol. 349, May 2022, https://doi.org/10.1016/J.JCLE-PRO.2022.131437.
  • [7] J. Świrska-Perkowska, A. Wicher, S. Pochwała, S. Anweiler, and M. Böhm, “Doweled cross Laminated Timber (DCLT) Building Air Tightness and Energy Efficiency Measurements: Case Study in Poland,” Energies, vol. 15, no. 23, Dec. 2022, https://doi.org/10.3390/EN15239029.
  • [8] P. Narowski, “Parametry obliczeniowe powietrza zewnętrznego i strefy klimatyczne Polski do obliczania mocy w systemach chłodzenia, wentylacji i klimatyzacji budynków,” Instal, vol. 12, pp. 21-30, 2020, https://doi.org/10.36119/15.2020.12.3.
  • [9] S. Pochwała et al., “Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system,” Energy, vol. 278, Sep. 2023, https://doi.org/10.1016/J.ENERGY.2023.128037.
  • [10] P. Conti, C. Bartoli, A. Franco, and D. Testi, “Experimental analysis of an air heat pump for heating service using a ‘hardware-in-the-loop’ system,” Energies, vol. 13, no. 17, Sep. 2020, https://doi.org/10.3390/EN13174498.
  • [11] M. Masiukiewicz, “Small photovoltaic setup for the air conditioning system,” E3S Web Conf., vol. 19, Oct. 2017, https://doi.org/10.1051/E3SCONF/20171901020.
  • [12] O. F. Yildiz, M. Yilmaz, and A. Celik, “Reduction of energy consumption and CO2 emissions of HVAC system in airport terminal buildings,” Build. Environ., vol. 208, p. 108632, Jan. 2022, https://doi.org/10.1016/J.BUILDENV.2021.108632.
  • [13] “5th SEE SDEWES Conference.” https://www.vlore2022.sdewes.org/invited-lectures (accessed Jun. 19, 2022).
  • [14] S. Zhang, P. Ocłoń, J. J. Klemeš, P. Michorczyk, K. Pielichowska, and K. Pielichowski, “Renewable energy systems for building heating, cooling and electricity production with thermal energy storage,” Renew. Sustain. Energy Rev., vol. 165, p. 112560, Sep. 2022, https://doi.org/10.1016/J.RSER.2022.112560.
  • [15] S. Li et al., “Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners,” Appl. Energy, vol. 304, p. 117821, Dec. 2021, https://doi.org/10.1016/J.APENERGY.2021.117821.
  • [16] D. Sánchez-García, D. Bienvenido-Huertas, and C. Rubio-Bellido, “Computational approach to extend the air-conditioning usage to adaptive comfort: Adaptive-Comfort-Control-Implementation Script,” Autom. Constr., vol. 131, p. 103900, Nov. 2021, https://doi.org/10.1016/J.AUTCON.2021.103900.
  • [17] X. Xu, W. Liu, and Z. Lian, “Dynamic indoor comfort temperature settings based on the variation in clothing insulation and its energy-saving potential for an air-conditioning system,” Energy Build., vol. 220, p. 110086, Aug. 2020, https://doi.org/10.1016/J.ENBUILD.2020.110086.
  • [18] Y. Tan, J. Peng, C. Curcija, R. Yin, L. Deng, and Y. Chen, “Study on the impact of window shades’ physical characteristics and opening modes on air conditioning energy consumption in China,” Energy Built Environ., vol. 1, no. 3, pp. 254-261, Jul. 2020, https://doi.org/10.1016/J.ENBENV.2020.03.002.
  • [19] Y. Tan, J. Peng, D. C. Curcija, R. Hart, J. C. Jonsson, and S. Selkowitz, “Parametric study of the impact of window attachments on air conditioning energy consumption,” Sol. Energy, vol. 202, pp. 136-143, May 2020, https://doi.org/10.1016/J.SOLENER.2020.03.096.
  • [20] M. Pomorski and Z. Kołodko, “An analysis of heat losses from an all-year outdoor swimming pool,” Instal, vol. 9, pp. 37-42, 2022, https://doi.org/10.36119/15.2022.9.4.
  • [21] K. J. Kontoleon, “Glazing solar heat gain analysis and optimization at varying orientations and placements in aspect of distributed radiation at the interior surfaces,” Appl. Energy, vol. 144, pp. 152-164, Apr. 2015, https://doi.org/10.1016/J.APENERGY.2015.01.087.
  • [22] E. Dec and R. Sekret, “Zakres komfortowych parametrów powietrza dla przebywania człowieka na zewnątrz w okresie lata,” Instal, vol. 8, pp. 7-11, 2020, https://doi.org/10.36119/15.2020.8.1.
  • [23] G. Bartnicki and B. Nowak, “Koniec sezonu grzewczego a efektywność energetyczna instalacji odbioru ciepła,” Instal, vol. 4, pp. 2-11, 2020, https://doi.org/10.36119/15.2020.4.1.
  • [24] A. Pełech, Wentylacja i klimatyzacja : podstawy, Wyd. 4. Oficyna Wydawnicza Politechniki Wrocławskiej. Politechnika Wrocławska, 2013.
  • [25] M. Karpuk, A. Pełech, E. Przydrózny, J. Walaszczyk, and S. Szczęśniak, “Air temperature gradient in large industrial hall,” E3S Web Conf., vol. 22, p. 00078, Nov. 2017, https://doi.org/10.1051/E3SCONF/20172200078.
  • [26] J. J. Walaszczyk, A. Przydrózna, and E. Przydrózny, “Intake power measurement as a criterion for control of HVAC systems,” E3S Web Conf., vol. 22, p. 00182, Nov. 2017, https://doi.org/10.1051/E3SCONF/20172200182.
  • [27] B. K. Hawes, T. T. Brunyé, C. R. Mahoney, J. M. Sullivan, and C. D. Aall, “Effects of four work-place lighting technologies on perception, cognition and affective state,” Int. J. Ind. Ergon., vol. 42, no. 1, pp. 122-128, Jan. 2012, https://doi.org/10.1016/J.ERGON.2011.09.004.
  • [28] S. Liu, Z. Liu, J. Wang, X. Ding, and X. Meng, “Effect of the material color on optical properties of thermochromic coatings employed in buildings,” Case Stud. Therm. Eng., vol. 45, p. 102916, May 2023, https://doi.org/10.1016/J.CSITE.2023.102916
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cafb7a1a-a780-42b5-b1cb-571d9b08462e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.