PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEM simulations of cracking in RC beams due to corrosion progress

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a two-dimensional model of a reinforced concrete (RC) element with rust introduced as interface between steel and concrete. The aim of the simulation is to represent the influence of reinforcement corrosion on the concrete cover. The analysis brings information about cracking of concrete, which is considered as the main aspect of failure of a structural element. The simulation is performed using Abaqus, a computational code based on the finite element method (FEM). The damage-plasticity and the cracking models are employed to describe the concrete response to chloride corrosion effects. In particular an RC cross-section is analyzed using two alternative algorithms of nonlinear computations: implicit and explicit solution. Moreover, a three-dimensional test of a beam subject to corrosion and static loading is analyzed.
Rocznik
Strony
1160--1172
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Institute for Computational Civil Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska Street 24, 31-155 Cracow, Poland
autor
  • Institute for Computational Civil Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska Street 24, 31-155 Cracow, Poland
Bibliografia
  • [1] Y. Du, A. Chan, L. Clark, Finite element analysis of the effects of radial expansion of corroded reinforcement, Computers and Structures 84 (2006) 917–929.
  • [2] B. Jang, B. Oh, Effects of non-uniform corrosion on the cracking and service life of reinforced concrete structures, Cement and Concrete Research 40 (2010) 1441–1450.
  • [3] J. Ozbolt, F. Orsanic, G. Balabanic, Modeling pull-out resistance of corroded reinforcement in concrete: coupled three-dimensional finite element model, Cement and Concrete Research 46 (2014) 41–55.
  • [4] Z. Bazant, Physical model for steel corrosion in concrete sea structures – theory, Journal of Structural Division 105 (ST6) (1979) 1137–1153.
  • [5] S. Pantazopoulou, K. Papoulia, Modelling cover-cracking due to reinforced corrosion in RC structures, Journal of Engineering Mechanics 4 (2001) 4133–4145.
  • [6] B. Martin-Perez, Service Life Modelling of RC Highway Structures Exposed to Chlorides, (Ph.D. dissertation), University of Toronto, Toronto, 1992.
  • [7] I. Balafas, C. Burgoyne, Modeling the structural effects of rust in concrete cover, Journal of Engineering Mechanics 137 (2011) 175–185.
  • [8] S. Guzman, J. Galvez, J. Sancho, Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration, Cement and Concrete Research 41 (2011) 893–902.
  • [9] S. Guzman, J. Galvez, J. Sancho, Modelling of corrosion- induced cover cracking in reinforced concrete by an embedded cohesive crack finite element, Engineering Fracture Mechanics 93 (2012) 92–107.
  • [10] SIMULIA, Abaqus Theory Manual (6.10), Dassault Systemes, Providence, RI, USA, 2010.
  • [11] M. German, J. Pamin, Three-dimensional FE simulation of pullout test of corroded bar from RC specimen, in: Computation Modelling of Concrete Structures, Taylor & Francis, London, 2014967–976.
  • [12] J. Lubliner, J. Oliver, S. Oller, E. O nate, A plastic-damage model for concrete, International Journal of Solids and Structures 25 (3) (1989) 299–326.
  • [13] J. Lee, G. Fenves, Plastic-damage model for cyclic loading of concrete structures, Journal of Engineering Mechanics 124 (8) (1998) 892–900.
  • [14] T. Belytschko, W. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, Chichester, West Sussex, 2000.
  • [15] T. Łodygowski, Numerical solutions of initial boundary value problems for metals and soils, in: P. Perzyna (Ed.), Localization and Fracture Phenomena in Inelastic Solids, CISM Course Lecture Notes No. 386, Springer-Verlag, Wien/ New York, 1998, pp. 392–468.
  • [16] G. Hofstetter, H.A. Mang, Computational plasticity of reinforced and prestressed concrete structures, Computational Mechanics 17 (1996) 242–254.
  • [17] I. Balafas, C. Burgoyne, Environmental effects on cover cracking due to corrosion, Cement and Concrete Research 40 (2010) 1429–1440.
  • [18] M. German, A. Zaborski, Numerical analysis of chloride corrosion of reinforced concrete, Technical Transactions 3 (2011) 47–60.
  • [19] M. German, J. Pamin, Two-dimensional FE simulation of cracking caused by expansion of corrosion products, recent advances in computational mechanics, in: Proceedings of the 20th International Conference on Computer Methods in Mechanics (CMM 2013), CRC Press, Balkema, 2014, pp. 139– 148.
  • [20] S. Ghavamian, Three dimensional nonlinear constitutive models of fractured concrete. Evaluation – comparison – adaptation, Tech, rep., Report of MECA Project, EDF RD, 2001.
  • [21] G. Al-Sulaimani, M. Kaleemullah, I. Basunbul, Rasheeduzzafar, Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members, ACI Structural Journal 87 (1990) 220–231.
  • [22] C. Andrade, C. Alonso, F. Molina, Cover cracking as a function of bar corrosion: Part I – Experimental test, Materials and Structures 84 (1993) 917–929.
  • [23] L. Czarnecki, P. Emmons, Repair and Protection of Concrete Structures, Polski Cement, 2002 (in Polish).
  • [24] D. Vorechovska, M. Vorechovsky, Modeling of reinforcement corrosion in concrete, in: Proceedings of FraMCoS-7, 2010, pp. 929–935.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caf85f65-edde-4e2e-a550-985d94844555
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.