PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wear Properties Analysis on Al-Based Automotive Alloy with Varied Levels of Si in Dry, 3.5% NaCl and Seawater Corrosive Environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wear tests of aluminum based automotive alloys with different Si content in 3.5% NaCl, seawater and dry sliding environment are carried out. A conventional pin-on-disc wear apparatus is used at 2.55 MPa pressure and 0.51 m/s speed for a sliding distance of 923.2 m. The results show that the wear rate and friction coefficient of the alloy decreases with the increase of silicon content up to the eutectic point in all sliding environments. Among the different Si-rich intermetallics formed, especially Mg2Si strengthens the alloys. It is more prominent in the case of a corrosive environment through creating MgO plus SiO2 layers, which protect the corrosive wear and reduce the friction coefficient. Wear test surfaces have shown that Si addition makes the alloys wear-resistant with smooth abrasive grooves covered with oxides.
Twórcy
  • Bangladesh University of Engineering and Technology, Deprtment of Mechanical Engineering, Dhaka-1000, Bangladesh
  • International University of Business Agriculture and Technology, Innovation Centre, Dhaka-1230, Bangladesh
Bibliografia
  • [1] F. Alshmri, Lightweight Material: Aluminium High Silicon Alloys in the Automotive Industry. Adv. Mater. Res. 774-776, 1271-1276 (2013). DOI: https://doi.org/10.4028/www.scientific.net/AMR.774-776.1271
  • [2] M. Haghshenas, J. Jamali, Assessment of circumferential cracks in hypereutectic Al-Si clutch housings. Case Stud. Eng. Fail. Anal. 8, 11-20 (2017). DOI: https://doi.org/10.1016/j.csefa.2016.11.003
  • [3] M. Javidani, D. Larouche, Application of cast Al-Si alloys in internal combustion engine components. Int. Mater. Rev. 59 (3), 132-158 (2014). DOI: https://doi.org/10.1179/1743280413Y.0000000027
  • [4] M. GmbH, Piston materials, in: Pist. Engine Test., Vieweg+Teubner Verlag, Wiesbaden, 59-82, (2012). DOI: https://doi.org/10.1007/978-3-8348-8662-0_4
  • [5] N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al-high Si alloys produced by selective laser melting. Mater. Des. 99, 120-126 (2016). DOI: https://doi.org/10.1016/j.matdes.2016.03.053
  • [6] Z. Yang, X. He, B. Li, A. Atrens, X. Yang, H. Cheng, Influence of Si, Cu, B, and trace alloying elements on the conductivity of the Al-Si-Cu alloy. Materials (Basel). 15 (2), 426 (2022). DOI: https://doi.org/10.3390/ma15020426
  • [7] l.F. Gomes, C.L. Kugelmeier, A. Garcia, C.A. Della Rovere, J.E. Spinelli, Influences of alloying elements and dendritic spacing on the corrosion behavior of Al-Si-Ag alloys. J. Mater. Res. Technol. 15, 5880-5893 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.11.043
  • [8] M.N. Ervina Efzan, H.J. Kong, C.K. Kok, Review: Effect of Alloying Element on Al-Si Alloys. Adv. Mater. Res. 845, 355-359 (2013). DOI: https://doi.org/10.4028/www.scientific.net/AMR.845.355
  • [9] A.A. Khan, M.R. Shoummo, M.S. Kaiser, Surface Quality of Fe, Ni, and Cr added Hyper-eutectic Al-Si Automotive Alloys under Up-milling and down-milling Operation 6 (1), 9-22 (2022). DOI: https://doi.org/10.17977/um016v6i12022p009
  • [10] W.S. Ebhota, T.-C. Jen, Intermetallics Formation and Their Effect on Mechanical Properties of Al-Si-X Alloys, in: Intermet. Compd. - Form. Appl., InTech. (2018). DOI: https://doi.org/10.5772/intechopen.73188
  • [11] E. Tillová, D. Závodská, L. Kuchariková, M. Chalupová, J. Belan, Study of Bending Fatigue Properties of Al-Si Cast Alloy. Arch. Metall. Mater. 62 (3), 1591-1596 (2017). DOI: https://doi.org/10.1515/amm-2017-0243
  • [12] M. Al Nur, A.A. Khan, S. Dev Sharma, M.S. Kaiser, Electrochemical corrosion performance of Si-doped Al-based automotive alloy in 0.1 M NaCl solution. J. Electrochem. Sci. Eng. 12 (3), 565-576 (2022). DOI: https://doi.org/10.5599/jese.1373
  • [13] M.G. Minciuna, P. Vizureanu, B. Jeż, A.V. Sandu, M. Nabialek, D.C. Achitei, Correlation between Microstructural and Electrochemical Properties of Al-Si Alloys. Arch. Metall. Mater. 67 (3), 1067-1070 (2022). DOI: https://doi.org/10.24425/amm.2022.139704
  • [14] N.E. Udoye, O.S.I. Fayomi, A.O. Inegbenebor, Assessment of Wear Resistance of Aluminium Alloy in Manufacturing Industry - A Review. Procedia Manuf. 35, 1383-1386 (2019). DOI: https://doi.org/10.1016/j.promfg.2019.09.007
  • [15] M.S. Kaiser, M.A. Matin, K.M. Shorowordi, Role of magnesium and minor zirconium on the wear behavior of 5xxx series aluminum alloys under different environments. J. Mech. Energy Eng. 4 (3), 209-220 (2020). DOI: https://doi.org/10.30464/jmee.2020.4.3.209
  • [16] D. Saber, R. Abdel-Karim, A.A. Kandel, K.A. El-Aziz, Corrosive Wear of Alumina Particles Reinforced Al-Si Alloy Composites. Phys. Met. Metallogr. 121 (2), 188-194 (2020). DOI: https://doi.org/10.1134/S0031918X19120147
  • [17] S.M. Hsu, R. Munro, M.C. Shen, Wear in boundary lubrication. Proc. Inst. Mech. Eng. Part J, J. Eng. Tribol. 216 (6), 427-441 (2002). DOI: https://doi.org/10.1243/135065002762355343
  • [18] H. Ye, An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications. J. Mater. Eng. Perform. 12 (3), 288-297 (2003). DOI: https://doi.org/10.1361/105994903770343132
  • [19] M.S. Kaiser, M.R. Basher, A.S.W. Kurny, Effect of scandium on microstructure and mechanical properties of cast Al-Si-Mg alloy. J. Mater. Eng. Perform. 21 (7), 1504-1508 (2012). DOI: https://doi.org/10.1007/s11665-011-0057-3
  • [20] S. Toschi, Optimization of A354 Al-Si-Cu-Mg Alloy Heat Treatment: Effect on Microstructure, Hardness, and Tensile Properties of Peak Aged and Overaged Alloy. Metals (Basel). 8 (11), 961 (2018). DOI: https://doi.org/10.3390/met8110961
  • [21] A.A. Razin, D.S. Ahammed, M. Al Nur, M.S. Kaiser, Role of Si on machined surfaces of Al- based automotive alloys under varying machining parameters. J. Mech. Energy Eng. 6 (1), 43-52 (2022). DOI: https://doi.org/10.30464/jmee.2022.6.1.43
  • [22] M.S. Kaiser, S.H. Sabbir, M.S. Kabir, M.R. Soummo, M. Al Nur, Study of mechanical and wear behaviour of hyper-eutectic Al-Si automotive alloy through Fe, Ni and Cr addition. Mater. Res. 21 (4), (2018). DOI: https://doi.org/10.1590/1980-5373-mr-2017-1096
  • [23] P.-F. Liu, L. Miao, Z. Deng, J. Zhou, Y. Gu, S. Chen, H. Cai, L. Sun, S. Tanemura, Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect. Appl. Energy. 241, 652-659 (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.02.030
  • [24] I.J. Polmear, Light Alloys-Metallurgy of the Light Metals, 3rd ed., Arnold, London, (1995).
  • [25] M.S. Kaiser, A. Towsif, S. Reaz Ahmed, Effect of Post-weld Thermal Treatment on Mechanical Properties of Welded Aluminum-Alloy Engine Head. J. Mater. Eng. Perform. 26 (8), 4148-4154 (2017). DOI: https://doi.org/10.1007/s11665-017-2846-9
  • [26] Q. Meng, G.S. Frankel, Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys. J. Electrochem. Soc. 151 (5), B271 (2004). DOI: https://doi.org/10.1149/1.1695385
  • [27] Y.J. Kang, J.H. Kim, J. Il Hwang, K.A. Lee, Effect of T6 heat treatment on the scratch wear behavior of extruded Al-12WT.%Si alloy. Arch. Metall. Mater. 64 (2), 617-622 (2019). DOI: https://doi.org/10.24425/amm.2019.127588
  • [28] B. Zhang, L. Zhang, Z. Wang, A. Gao, Achievement of High Strength and Ductility in Al-Si-Cu-Mg Alloys by Intermediate Phase Optimization in As-Cast and Heat Treatment Conditions. Materials (Basel). 13 (3), 647 (2020). DOI: https://doi.org/10.3390/ma13030647
  • [29] V. Raghavan, Al-Cu-Mg-Si (Aluminum-Copper-Magnesium-Silicon). J. Phase Equilibria Diffus. 28 (2), 198-200 (2007). DOI: https://doi.org/10.1007/s11669-007-9046-5
  • [30] A.K. Prasada Rao, K. Das, B.S. Murty, M. Chakraborty, Effect of grain refinement on wear properties of Al and Al-7Si alloy. Wear. 257 (1-2), 148-153 (2004). DOI: https://doi.org/10.1016/j.wear.2003.10.017
  • [31] G.E. Toten, Lubrication and Wear Technology, 18th ed., ASM Handbook, Materials Park, Ohio, USA, 1992
  • [32] Y. Zhu, D.A. Cullen, S. Kar, M.L. Free, L.F. Allard, Evaluation of Al3Mg2 Precipitates and Mn-Rich Phase in Aluminum-Magnesium Alloy Based on Scanning Transmission Eelectron Microscopy Imaging. Metall. Mater. Trans. A. 43 (13), 4933-4939 (2012). DOI: https://doi.org/10.1007/s11661-012-1354-7
  • [33] X.W. Wang, W. Wang, W. Chen, D.M. Chen, Effect of Al addition and heat treatment on the microstructures and corrosion resistance of Mg-Cu alloys. J. Mater. Sci. Technol. 98, 219-232 (2022). DOI: https://doi.org/10.1016/j.jmst.2021.05.010
  • [34] H. Ezuber, A. El-Houd, F. El-Shawesh, A study on the corrosion behavior of aluminum alloys in seawater. Mater. Des. 29 (4), 801-805 (2008). DOI: https://doi.org/10.1016/j.matdes.2007.01.021
  • [35] Z. Szklarska-Smialowska, Pitting corrosion of aluminum. Corros. Sci. 41 (9), 1743-1767 (1999). DOI: https://doi.org/10.1016/S0010-938X(99)00012-8
  • [36] W.M. Carroll, C.B. Breslin, Stability of passive films formed on aluminium in aqueous halide solutions. Br. Corros. J. 26 (4), 255-259 (1991). DOI: https://doi.org/10.1179/000705991798269035
  • [37] B.A. Shaw, G.D. Davis, T.L. Fritz, B.J. Rees, W.C. Moshier, The Influence of Tungsten Alloying Additions on the Passivity of Aluminum. J. Electrochem. Soc. 138 (11), 3288-3295 (1991). DOI: https://doi.org/10.1149/1.2085404
  • [38] A.K. Behera, G.J. Chakrapani, S. Kumar, N. Rai, Identification of seawater intrusion signatures through geochemical evolution of groundwater: a case study based on coastal region of the Mahanadi delta, Bay of Bengal, India. Nat. Hazards. 97 (3), 1209-1230 (2019). DOI: https://doi.org/10.1007/s11069-019-03700-6
  • [39] A.S. Fouda, F.S. Mohamed, M.W. El-Sherbeni, Corrosion Inhibition of Aluminum-Silicon Alloy in Hydrochloric Acid Solutions Using Carbamidic Thioanhydride Derivatives. J. Bio- Tribo- Corrosion. 2 (2), 11 (2016). DOI: https://doi.org/10.1007/s40735-016-0039-y
  • [40] J.R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, 1999
  • [41] R. Escalera-Lozano, M.I. Pech-Canul, M.A. Pech-Canul, M. Montoya-Davila, A. Uribe-Salas, The role of Mg2Si in the corrosion behavior of Al-Si-Mg alloys for pressureless infiltration. Open Corros. J. 3 (1), 73-79 (2010). DOI: https://doi.org/10.2174/1876503301003010073
  • [42] A.A. Khan, M.S. Kaiser, Electrochemical corrosion performance of eutectic Al-Si automotive alloy in 0.1 M and 0.2 M NaCl solution. IOP Conf. Ser. Mater. Sci. Eng. 1248 (1), 012031 (2022). DOI: https://doi.org/10.1088/1757-899X/1248/1/012031
  • [43] A.G. Dickson, C. Goyet, Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2, Oak Ridge, TN, (1994). DOI: https://doi.org/10.2172/10107773
  • [44] W.-J. Lee, S.-I. Pyun, Effects of sulphate ion additives on the pitting corrosion of pure aluminium in 0.01 M NaCl solution. Electrochim. Acta. 45 (12), 1901-1910 (2000). DOI: https://doi.org/10.1016/S0013-4686(99)00418-1
  • [45] B.W. Samuels, K. Sotoudeh, R.T. Foley, Inhibition and Acceleration of Aluminum Corrosion. Corrosion 37 (2), 92-97 (1981). DOI: https://doi.org/10.5006/1.3593852
  • [46] P. Sureshkumar, T. Jagadeesha, l. Natrayan, M. Ravichandran, D. Veeman, S.M. Muthu, Electrochemical corrosion and tribological behaviour of AA6063/Si3N4/Cu(NO3)2 composite processed using single-pass ECAPA route with 120° die angle. J. Mater. Res. Technol. 16, 715-733 (2022). DOI: https://doi.org/10.1016/j.jmrt.2021.12.020
  • [47] N. Kang, M. El Mansori, A new insight on induced-tribological behaviour of hypereutectic Al-Si alloys manufactured by selective laser melting. Tribol. Int. 149, 105751 (2020). DOI: https://doi.org/10.1016/j.triboint.2019.04.035
  • [48] M.G. Mueller, M. Fornabaio, A. Mortensen, Silicon particle pinhole defects in aluminium-silicon alloys. J. Mater. Sci. 52 (2), 858-868 (2017). DOI: https://doi.org/10.1007/s10853-016-0381-y
  • [49] M.S. Kaiser, M.R. Qadir, S. Dutta, Electrochemical Corrosion Performance of Commercially Used Aluminium Engine Block and Piston in 0.1 M NaCl. J. Mech. Eng. 45 (1), 48-52 (2015). DOI: https://doi.org/10.3329/jme.v45i1.24384
  • [50] V.V.K. Narayan Prabhu, Review of Microstructure Evolution in Hypereutectic Al-Si Alloys and its Effect on Wear Properties. Trans. Indian Inst. Met. 67 (1), 1-18 (2014). DOI: https://doi.org/10.1007/s12666-013-0327-x
  • [51] Y. Zedan, A.M. Samuel, H.W. Doty, V. Songmene, F.H. Samuel, Effects of Trace Elements on the Microstructural and Machinability Characteristics of Al-Si-Cu-Mg Castings. Materials (Basel). 15 (1), 377 (2022). DOI: https://doi.org/10.3390/ma15010377
  • [52] X. Chen, T.T. Öpöz, Effect of different parameters on grinding efficiency and its monitoring by acoustic emission. Prod. Manuf. Res. 4 (1), 190-208 (2016). DOI: https://doi.org/10.1080/21693277.2016.1255159
  • [53] W.J. Liang, P.A. Rometsch, L.F. Cao, N. Birbilis, General aspects related to the corrosion of 6xxx series aluminium alloys: exploring the influence of Mg/Si ratio and Cu. Corros. Sci. 76, 119-128 (2013). DOI: https://doi.org/10.1016/j.corsci.2013.06.035
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caf63a03-fd39-4a70-b009-7873537926f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.