PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the neutronic properties of the (Th-233U)O2, (Th-233U)C, and (Th-233U)N fuels in small long-life PWR cores with 300, 400, and 500 MWth of power

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The neutronic characteristics of (Th-233U)O2, (Th-233U)C, and (Th-233U)N have been compared in small long-life pressurized water reactors (PWRs). Neutronic calculations were carried out at 300 MWth, 400 MWth, and 500 MWth with two cladding types: zircaloy-4 and ZIRLO (Zr low oxygen). They were performed using the Standard Reactor Analysis Code (SRAC) and JENDL-4.0 nuclide data, dividing the reactor core into three fuel zones with varying 233U enrichment levels, ranging from 3% to 9% and fl uctuating by 1%, employing the PIJ module at the fuel cell level and the CITATION module at the reactor core level. In addition, 231Pa was added as burnable poison (BP). The (Th-233U)N fuel demonstrated superior criticality compared to the other fuel types, as it consistently achieves critical conditions throughout the reactor’s operating cycle with excess reactivity <1.00% dk/k for several fuel confi gurations at the 300 MWth and 400 MWth power levels. Moreover, the (Th-233U)N and (Th-233U)C fuels exhibited similar and fl atter power density distribution patterns compared to the (Th-233U)O2 fuel. The power peaking factor (PPF) value was relatively higher for (Th-233U)O2 fuel than the other two fuels. The (Th-233U)N fuel exhibited the most negative Doppler coefficient, followed by (Th- 233U)C and (Th-233U)O2 fuels. Analysis of burnup levels revealed that the (Th-233U)O2 fuel achieved significantly higher burnup than the other two fuels.
Słowa kluczowe
Czasopismo
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesa 10, Bandung 40132, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Jl. Prof. Dr. H. Hadari Nawawi, Pontianak 78124, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesa 10, Bandung 40132, Indonesia and Nuclear Physics & Biophysics Research Division Department of Physics, Faculty of Mathematics
  • Natural Sciences, Institut Teknologi Bandung Jl. Ganesa 10, Bandung 40132, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesa 10, Bandung 40132, Indonesia and Nuclear Physics & Biophysics Research Division Department of Physics, Faculty of Mathematics
  • Natural Sciences, Institut Teknologi Bandung Jl. Ganesa 10, Bandung 40132, Indonesia
Bibliografia
  • 1. International Atomic Energy Agency. (2021). Energy, electricity and nuclear power estimates for the period up to 2050. Vienna: IAEA. (Reference Data Series no.1). https://www.iaea.org/publications/15028/energyelectricity-and-nuclear-power-estimates-for-the-periodup-to-2050.
  • 2. Cummins, W. E., & Matzie, R. (2018). Design evolution of PWRs: Shippingport to generation III+.Prog. Nucl. Energy, 102, 9–37. DOI: 10.1016/j.pnucene.2017.08.008.
  • 3. Rowinski, M. K., White, T. J., & Zhao, J. (2015). Small and medium sized reactors (SMR): A review of technology. Renew. Sust. Energy Rev., 44, 643–656. DOI: 10.1016/j.rser.2015.01.006.
  • 4. Akbari-Jeyhouni, R., Rezaei Ochbelagh, D., Maiorino, J. R., D’Auria, F., & de Stefani, G. L. (2018). The utilization of thorium in small modular reactors –Part I: Neutronic assessment. Ann. Nucl. Energy, 120, 422–430. DOI: 10.1016/j.anucene.2018.06.013.
  • 5. Jagannathan, V., Mathur, A., & Khan, S. A. (2016). Thorium utilization in existing and advanced reactor types. Int. J. Hydrog. Energy, 41(17), 7094–7102. DOI: 10.1016/j.ijhydene.2015.12.035.
  • 6. du Toit, M. H., & Naicker, V. V. (2018). Neutronic design of homogeneous thorium/uranium fuel for 24 month fuel cycles in the European pressurized reactor using MCNP6. Nucl. Eng. Des., 337(5), 394–405.DOI: 10.1016/j.nucengdes.2018.07.023.
  • 7. Tsige-Tamirat, H. (2011). Neutronics assessment of the use of thorium fuels in current pressurized water reactors. Prog. Nucl. Energy, 53(6), 717–721. DOI: 10.1016/j.pnucene.2011.04.005.
  • 8. Gorton, J. P., Collins, B. S., Nelson, A. T., & Brown, N. R. (2019). Reactor performance and safety characteristics of ThN-UN fuel concepts in a PWR. Nucl. Eng. Des., 355(7), 110317. DOI: 10.1016/j.nucengdes.2019.110317.
  • 9. Trellue, H. R., Bathke, C. G., & Sadasivan, P. (2011). Neutronics and material attractiveness for PWR thorium systems using Monte Carlo techniques. Prog. Nucl. Energy, 53(6), 698–707. DOI: 10.1016/j.pnucene.2011.04.007.
  • 10. Subki, I., Pramutadi, A., Rida, S. N. M., Su’ud, Z., Eka Sapta, R., Nurul, S. Muh., Topan, S., Astuti, Y., & Soentono, S. (2008). The utilization of thorium for long-life small thermal reactors without on-site refueling. Prog. Nucl. Energy, 50(2/6), 152–156. DOI: 10.1016/j.pnucene.2007.10.029.
  • 11. Raj, D., & Kannan, U. (2022). Analysis for the use of thorium based fuel in LWRs. Ann. Nucl. Energy, 174, 109162. DOI: 10.1016/j.anucene.2022.109162.
  • 12. Humphrey, U. E., & Khandaker, M. U. (2018). Viability of thorium-based nuclear fuel cycle for thenext generation nuclear reactor: Issues and prospects. Renew. Sust. Energ. Rev., 97(8), 259–275. DOI: 10.1016/j.rser.2018.08.019.
  • 13. Oettingen, M., & Cetnar, J. (2021). Numerical modelling of modular high-temperature gas-cooled reactors with thorium fuel. Nukleonika, 66(4), 133–138. DOI: 10.2478/nuka-2021-0020.
  • 14. Uguru, E. H., Sani, S. F. A., Khandaker, M. U., & Rabir, M. H. (2020). Investigation on the effect of 238U replacement with 232Th in small modular reactor (SMR) fuel matrix. Prog. Nucl. Energy, 118(2), 103108. DOI: 10.1016/j.pnucene.2019.103108.
  • 15. Galahom, A. A., Mohsen, M. Y. M., & Amrani, N. (2022). Explore the possible advantages of using 12 B. P. Lapanporo, Z. Su’ud, A. P. A. Mustari thorium-based fuel in a pressurized water reactor (PWR). Part 1: Neutronic analysis. Nucl. Eng. Technol., 54(1), 1–10. DOI: 10.1016/j.net.2021.07.019.
  • 16. Oettingen, M., & Skolik, K. (2016). Numerical design of the Seed-Blanket Unit for the thorium nuclear fuel cycle. E3S Web of Conf., 10, 3–7. DOI: 10.1051/e3sconf/20161000067.
  • 17. Liu, R., Cai, J., & Zhou, W. (2020). Multiphysics modeling of thorium-based fuel performance with a two-layer SiC cladding in a light water reactor. Ann. Nucl. Energy, 136, 107036. DOI: 10.1016/j.anucene.2019.107036.
  • 18. Castro, V. F., Velasquez, C. E., & Pereira, C. (2020).Criticality and depletion analysis of reprocessed fuel spiked with thorium in a PWR core. Nucl. Eng.Des., 360(1), 110514. DOI: 10.1016/j.nucengdes.2020.110514.
  • 19. Tucker, L. P., & Usman, S. (2018). Thorium-based mixed oxide fuel in a pressurized water reactor: A burnup analysis with MCNP. Ann. Nucl. Energy, 111, 163–175. DOI: 10.1016/j.anucene.2017.08.057.
  • 20. Maiorino, J. R., Stefani, G. L., Moreira, J. M. L., Rossi, P. C. R., & Santos, T. A. (2017). Feasibility to convert an advanced PWR from UO2 to a mixed U/ThO2 core – Part I: Parametric studies. Ann. Nucl. Energy, 102, 47–55. DOI: 10.1016/j.anucene.2016.12.010.
  • 21. Zainuddin, N. Z., Parks, G. T., & Shwageraus, E.(2016). The factors affecting MTC of thorium–plutonium-fuelled PWRs. Ann. Nucl. Energy, 98, 132–143.DOI: 10.1016/j.anucene.2016.07.034.
  • 22. Morrison, S. L., Lindley, B. A., & Parks, G. T. (2018). Isotopic and spectral effects of Pu quality in Th-Pu fueled PWRs. Ann. Nucl. Energy, 117, 318–332. DOI: 10.1016/j.anucene.2018.03.025.
  • 23. Li, J., Li, X., & Cai, J. (2021). Neutronic characteristics and feasibility analysis of micro-heterogeneous duplex ThO2-UO2 fuel pin in PWR. Nucl. Eng.Des., 382(3), 111382. DOI: 10.1016/j.nucengdes.2021.111382.
  • 24. Baldova, D., Fridman, E., & Shwageraus, E. (2016). High conversion Th-U233 fuel for current generation of PWRs: Part III – Fuel availability and utilization considerations. Ann. Nucl. Energy, 87, 517–526. DOI: 10.1016/j.anucene.2015.10.006.
  • 25. Duan, Z., Yang, H., Satah, Y., Murakami, K., Kano, S., Zhao, Z., Shen, J., & Abe, K. (2017). Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des., 316, 131–150. DOI: 10.1016/j.nucengdes.2017.02.031.
  • 26. ARIS – Technical data. (2023). Vienna: International Atomic Energy Agency. https://aris.iaea.org/sites/power.html (accessed August 07, 2023).
  • 27. Lapanporo, B. P., & Su’Ud, Z. (2022). Parametric study of thorium fuel utilization on small modular pressurized water reactors (PWR). J. Phys.-Conf. Series, 2243(1). DOI: 10.1088/1742-6596/2243/1/012062.
  • 28. Okumura, K., Kugo, T., Kaneko, K., & Tsuchihashi, K. (2007). SRAC2006: A comprehensive neutronics calculation code system. Japan Atomic Energy Agency. DOI: 10.11484/JAEA-DATA-CODE-2007-004.
  • 29. Kulikov, G. G., Kulikov, E. G., Shmelev, A. N., & Apse, V. A. (2017). Protactinium-231 – New burnable neutron absorber. Nucl. Energy Technol., 3(4), 255–259. DOI: 10.1016/j.nucet.2017.10.002.
  • 30. Bae, I. H., Na, M. G., Lee, Y. J., & Park, G. C. (2008). Calculation of the power peaking factor in a nuclear reactor using support vector regression models. Ann. Nucl. Energy, 35(12), 2200–2205. DOI: 10.1016/j.anucene.2008.09.004.
  • 31. Mohd Ali, N. S., Hamzah, K., Idris, F., Basri, N. A., Sarkawi, M. S., Sazali, M. A., Rabir, H., Minhat, M. S., & Zainal, J. (2022). Power peaking factor prediction using ANFIS method. Nucl. Eng. Technol., 54(2), 608–616. DOI: 10.1016/j.net.2021.08.011.
  • 32. Kubiński, W., Darnowski, P., & Chęć, K. (2021). Optimization of the loading pattern of the PWR core using genetic algorithms and multi-purpose fitness function. Nukleonika, 66(4), 147–151. DOI: 10.2478/nuka-2021-0022.
  • 33. Ashiq, M., Ilyas, M., & Ahmad, S. U. I. (2016). Optimization of PWR design parameters for implementation in SMRs. Ann. Nucl. Energy, 94, 123–128. DOI: 10.1016/j.anucene.2015.12.015.
  • 34. Chen, C., Mei, H., He, M., & Li, T. (2022). Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design. Nucl. Eng. Technol., 54(12), 4743–4750. DOI: 10.1016/j.net.2022.08.012.
  • 35. Tverberg, T., & Wiesenack, W. (2002). Fission gas release and temperature data from XA0202217 instrumented high burnup LWR fuel. In Technical and economic limits to fuel burnup extension (pp. 7–16). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1299).
  • 36. Kiuchi, K., Ioka, I., Takizawa, M., & Wada, S. (2002). Development of advanced cladding material for burnup extension. In Technical and economic limits to fuel burnup extension (pp. 112–125). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1299).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caf562ba-ce6c-4feb-a1a7-e66449c9c391
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.