PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie zjawisk w procesach termicznej konwersji paliw stałych

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Twórcy
  • Instytut Maszyn Przepływowych PAN w Gdańsku, Zakład Energii Odnawialnych
Bibliografia
  • [1] Ackerman C.C., Bertman B., Fairbank H.A., Guyer R.A. Second sound in solid helium. Phys. Rev. Lett., 16:789–791, 1966.
  • [2] Adesanya B.A., Pham H.N. Mahematical modelling of devolatilization of large coal particles in a convective environment. Fuel, 74:896–902, 1995.
  • [3] Ahmed I.I., Gupta A.K. Kinetics of woodchips char gasification with steam and carbon dioxide. Appl. Energy, 88:1613–1619, 2011.
  • [4] Alvarez R., Pis J.J., Diez M.A., Barriocanal C., Menendez J.A., Casal M.D., Parra J.B. Carbonization of wet and preheated coal. effect on coke quality and its relation with textural properties. J. Anal. Appl. Pyrol., 38:119–130, 1996.
  • [5] Amamoto K. Coke strength development in the coke oven. influence of maximum temperature and heating rate. Fuel, 76:17–21, 1997.
  • [6] Anca-Couce A., Zobel N., Jakobsen H.A. Multi-scale modeling of fixedbed thermo-chemical processes of biomass with the representative particle model: Application to pyrolysis. Fuel, 103:773–782, 2013.
  • [7] Anderson D.A., Tannehill J.C., Pletcher R.H. Computational fluid mechanics and heat transfer. Hemisphere Publishing Corporation, 1999.
  • [8] Antaki P.J. Importance of nonfourier heat conduction in solid-phase reactions. Combust. Flame, 112:329–341, 1998.
  • [9] Atkinson B., Merrick D. Mathematical models of the thermal decomposition of coal: 4. Heat transfer and temperature profiles in a coke-oven charge. Fuel, 62:553–561, 1983. 184 Literatura
  • [10] Babu B.V., Chaurasia A.S. Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Convers. Manag., 45:1297–1327, 2004.
  • [11] Babu B.V., Sheth P.N. Modeling and simulation of reduction zone of downdraft biomass gasifier: effect of char reactivity factor. Energy Convers. Manag., 47(15–16):2602–2611, 2006.
  • [12] Bangham D.H., Franklin R.E. Thermal expansion of coal and carbonised coals. Transactions of the Faraday Society, 42B:289–295, 1946.
  • [13] Baris D., Gehrmann H.J., Mätzing H., Stapf D., Seifert H., McGowan T. Characterization of the combustion behavior of DMC FuelTM (Vol. 31). 34rd International Conference on Thermal Treatment Technologies and Hazardous Waste Combustors, Houston, USA, October 20–22 2015.
  • [14] Barr P.V., Osinski E.J., Brimacombe J.K., Khan M.A., Readyhough P.J. Mathematical model for tall coke oven battery. Part 3. Integrated model and its application. Iron. Steel., 21:44–55, 1994.
  • [15] Barriocanal C., Diez M.A., Alvarez R., Casal M.D. Relationship between coking pressure generated by coal blends and the composition of their primary tars. J. Anal. Appl. Pyrol., 85:514–520, 2009.
  • [16] Barriocanal C., Hayes D., Patrick J.W., Walker A. A laboratory study of the mechanism of coking pressure generation. Fuel, 77(7):729–733, 1998.
  • [17] Barriocanal C., Patrick J.W., Walker A. The laboratory identification of dengerously coking coals. Fuel, 77(8):881–884, 1998.
  • [18] Basu P. Biomass gasification and pyrolysis. Practical design and theory. Elsevier, 2010.
  • [19] Bilbao R., Mastral J.F., Ceamanos J., Aldea M.E. Modelling of the pyrolysis of wet wood. J. Anal. Appl. Pyrol., 36:81–97, 1996.
  • [20] Bilicki Z. Rozszerzona termodynamika procesów nieodwracalnych i termodynamika parametrów wewnętrznych. W: Współczesne kierunki w termodynamice, s. 49–80. Komitet Termodynamiki i Spalania PAN, Wydz. IV Nauk Technicznych PAN, Wydawnictwo IMP PAN, 2001. Literatura 185
  • [21] Bouraoui Z., Jeguirim M., Guizani C., Limousy L., Dupont C., Gadiou R. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity. Energy, 88:703–710, 2015.
  • [22] Branca C., Di Blasi C. Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J. Anal. Appl. Pyrol., 67:207–219, 2003.
  • [23] Bruch C., Peters B., Nussbaumer T. Modelling wood combustion under fixed bed conditions. Fuel, 82(6):729–738, 2003.
  • [24] Bryden K.M., Ragland K.W., Rutland C.J. Modelling thermally thick pyrolysis of wood. Biomass Bioenergy, 22:41–53, 2002.
  • [25] Buczynski R., Weber R., Kim R., Schwöppe P. One-dimensional model of heat-recovery, non-recovery coke ovens. Part II: Coking-bed sub-model. Fuel, 181:1115–1131, 2016.
  • [26] Burhenne L., Damiani M., Aicher T. Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis. Fuel, 107:836–847, 2013.
  • [27] Buryan P., Staff M. Pyrolysis of the waste biomass. J. Therm. Anal. Calorim., 82:81–91, 2003.
  • [28] Butorin V.I., Matveeva G.N. Isledovanie temperaturnych polej v pecznoj kamere koksovych batarej s ispolzovaniem EWM. Koks i Chimija, 10:20– 24, 1975.
  • [29] Casal M.D., Canga C.S., Diaz-Faes E., Diez M.A., Alvarez R., Barriocanal C. Low-temperature pyrolysis of coals with different coking pressure characteristics. J. Anal. Appl. Pyrol., 74:96–103, 2005.
  • [30] Casal M.D., Diaz-Faes E., Alvarez R., Diez M.A., Barriocanal C. Influence of the permeability of the coal plastic layer on coking pressure. Fuel, 85(3):281–288, 2006.
  • [31] Cetin E., Gupta R., Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity. Fuel, 84(10):1328–1334, 2005. 186 Literatura
  • [32] Chan W.C., Kelbon M., Krieger B.B. Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64:1505–1513, 1985.
  • [33] Chao Ch.Y.H., Wang J.H.,Kong W. Effects of fuel properties on the combustion behaviour of different types of porous beds soaked with combustible liquid. Int. J. Heat Mass Trans., 47:5201–5210, 2004.
  • [34] Ciżmiński P. Modelowanie niestacjonarnych procesów wymiany ciepła i masy w grawitacyjnym reaktorze zgazowującym paliwo stałe. Rozprawa doktorska, Instytut Maszyn Przepływowych PAN, Gdańsk, 2018.
  • [35] Ciżmiński P., Polesek-Karczewska S., Kardaś D. Modelling of drying and pyrolysis in a gasifier during the startup phase. Trans. IFFM, 128:78–83, 2015.
  • [36] Date W.A. Analytic combustion with thermodynamics, chemical kinetics and mass transfer. Cambridge University Press, Cambridge, 2011.
  • [37] Daud W.M.A.W., Ali W.S.W., Salaiman M.Z. Effect of carbonization temperature on the yield and porosity of har produced from palm shell. J. Chem. Technol. Biotechnol., 76(12):1281–1285, 2001.
  • [38] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers. Manag., 41:633–646, 2000.
  • [39] Demirbas A. Combustion characteristics of different biomass fuels. Progr. Energy Combust. Sci., 30:219–230, 2004.
  • [40] Di Blasi C. Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem. Eng. Sci., 51:1121– 1132, 1996.
  • [41] Di Blasi C. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. J. Anal. Appl. Pyrol., 47:43–64, 1998.
  • [42] Di Blasi C. Dynamic behaviour of stratified downdraft gasifiers. Chem. Eng. Sci., 55:2931–2944, 2000.
  • [43] Di Blasi C. Modeling wood gasification in a countercurrent fixed-bed reactor. AIChE J., 50 (9):2306–2319, 2004. Literatura 187
  • [44] Di Blasi C., Branca C. Kinetics of primary product formation from wood pyrolysis. Ind. Eng. Chem. Res., 40(23):5547–5556, 2001.
  • [45] Di Blasi C., Branca C., Santoro A., Hernandez E.G. Pyrolytic behavior and products of some wood varieties. Combust. Flame, 124:165–177, 2001.
  • [46] DiBlasi C., Branca C. Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel, 104:847–860, 2013.
  • [47] Domański R. Promieniowanie laserowe - oddziaływanie na ciała stałe. WNT, Warszawa, 1990.
  • [48] Dortmund Data Bank. http://www.ddbst.com.
  • [49] Eames I.W., Marr R.J., Sabir H. The evaporation coefficient of water: a review. Int. J. Heat Mass Trans., 40(12):2963–2973, 1997.
  • [50] Eric A., Dakic D., Nemoda S., Komatina M., Repic B. Experimental determination thermo physical characteristics of balled biomass. Energy, 45:350–357, 2012.
  • [51] Fisher C.H. Composition of coal tar and light oil. Bureau of Mines, Bulletin 412, Washington, 1938.
  • [52] Foit M. Automatyczne podawanie paliwa–problemy. Jak prawidłowo eksploatować kociołna paliwa stałe? InstalReporter, 4:46–49, 2015.
  • [53] Frenklach M., Wang H., Rabinowitz M.J. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method – combustion of methane. Prog. Energy Combust., 18:47–73, 1992.
  • [54] Fu Z., Guo Z., Yuan Z., Wang Z. Swelling and shrinkage behavior of raw and processed coals during pyrolysis. Fuel, 86(3):418–425, 2007.
  • [55] Gao N., Li A. Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier. Energy Convers. Manag., 49(12):3483–3490, 2008.
  • [56] Giltrap D.L., McKibbin R., Barnes G.R.G. A steady-state model of gas–char reactions in a downdraft gasifier. Solar Energy, 74:85–91, 2003.
  • [57] Glassman I. Combustion. 2nd Ed., Academic Press, Orlando, 1987. 188 Literatura
  • [58] Gobel B., Henriksen U., Jensen T.K., Qvale B., Houbak N. The development of a computer model for a fixed bed gasifier and its use for optimization and control. Biores. Technol., 98:2043–2052, 2007.
  • [59] Grassmann A., Peters F. Experimental investigation of heat conduction in wet sand. Heat Mass Transfer, 35(4):289–294, 1999.
  • [60] Gronli M.G. Theoretical and experimental study of the thermal degradation of biomass. Rozprawa doktorska, Norwegian University of Science and Technology, Trondheim, 1996.
  • [61] Grucelski A., Pozorski J. Application of Lattice Boltzmann method to meso–scale modelling of coal devolatilisation. Chem. Eng. Sci., 172:503– 512, 2017.
  • [62] Guelton N., Rozhkova T.V. Prediction of coke oven wall pressure. Fuel, 139:692–703, 2015.
  • [63] Guo W., Lim C.J., Bi X., Sokhansajn S., Melin S. Determination of effective thermal conductivity and specific heat capacity of wood pellets. Fuel, 103:347–355, 2013.
  • [64] Gupta M., Yang J., Roy C. Predicting the effective thermal conductivity of polydispersed beds of softwood bark and softwood char. Fuel, 82:395– 404, 2003.
  • [65] Gupta M., Yang J., Roy C. Specific heat and thermal conductivity of softwood bark and softwood char particles. Fuel, 82:919–927, 2003.
  • [66] Hankalin V., Ahonen T., Raiko R. On thermal properties of a pyrolysing wood particle. Finnish-Swedish Flame Days 2009. Naantali, Finland, January 2009.
  • [67] Hanson S., Steel K.M., Snape C.E., Patrick J.W. The possible role of fissure formation in the prevention of coking pressure generation. Fuel, 85:19–24, 2006.
  • [68] Harada T., Hata T., Ishihara S. Thermal constants of wood during the heating process measured with the laser flash method. J. Wood Sci., 44:425–435, 1998. Literatura 189
  • [69] Haseli Y., Van Oijen J.A., de Goey L.P.H. Modeling biomass particle pyrolysis with temperature-dependent heat of reactions. J. Anal. Appl. Pyrol., 90:140–154, 2011.
  • [70] Herwig H., Beckert K. Experimental evidence about the controversy concerning fourier or non-fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transfer, 36(5):387–392, 2000.
  • [71] Hirsch C. Numerical computation of internal and external flows, t.2. John Wiley&Sons Ltd., , 1994.
  • [72] Hori R., Wada M. The thermal expansion of wood cellulose crystals. Cellulose, 12:479–484, 2005.
  • [73] Instytut Chemicznej Przeróbki Węgla. Dane niepublikowane, IChPW Zabrze, 2007.
  • [74] Instytut Maszyn Przepływowych PAN. Pomiary własne, IMP PAN Gdańsk, 2012.
  • [75] Jaojaruek K. Mathematical model to predict temperature profile and air–fuel equivalence ratio of a downdraft gasification process. Energy Convers. Manag., 83:223–231, 2014.
  • [76] Jarvinen M., Zevenhoven R., Vakkilainen E., Forssen M. Black liquor devolatilization and swelling – a detailed droplet model and experimental validation. Biomass Bioenergy, 24:495, 2003.
  • [77] Jayah T.H., Aye L., Fuller R.J., Stewart D.F. Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenergy, 25(4):459– 469, 2003.
  • [78] Jenkins D.R. Plastic layer permeability estimation using a model of gas pressure in a coke oven. Fuel, 80:2057–2065, 2001.
  • [79] Jenkins D.R., Mahoney M.R. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength. Fuel, 89:1663–1674, 2010.
  • [80] Jenkins D.R., Mahoney M.R., Keating J.C. Fissure formation in coke. 1: The mechanism of fissuring. Fuel, 89:1654–1662, 2010. 190 Literatura
  • [81] Jin K., Feng Y., Zhang X., Wang M., Yang J., Ma X. Simulation of transport phenomena in coke oven with staging combustion. App. Therm. Eng., 58:354–362, 2013.
  • [82] Johansson R., Thunman H., Leckner B. Influence of intraparticle gradients in modeling of fixed bed combustion. Combust. Flame, 149:49–62, 2007.
  • [83] L. G. Jou D., Casas-Vazquez J. Extended irreversible thermodynamics. Springer, 1998.
  • [84] Kaminski W. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transfer, 112:555–560, 1990.
  • [85] Kamiuto K., Yee S.S. Correlated radiative transfer through a packed bed of opaque spheres. Int. Commun. Heat Mass Transf., 32:133–139, 2005.
  • [86] Kamyk J. Koks. W: Bilans gospodarki surowcami mineralnym Polski i świata 2012, pages 495–502. Państwowy Instytut Geologiczny– Państwowy Instytut Badawczy, Warszawa, 2014.
  • [87] Kantzas A., Bryan J., Taheri S. Fundamentals of fluid flow in porous media. Perm Inc. TIPM Laboratory, http://perminc.com/resources/fundamentals-of-fluid-flow-in-porousmedia/.
  • [88] Kardaś D. Modelowanie procesów cieplno-przepływowych w kotłach energetycznych. Rozprawa habilitacyjna, Gdańsk, 2010.
  • [89] Kardaś D. From biomass towards syngas. Trans. IFFM, 127:63–89, 2015.
  • [90] Kardaś D., Kluska J., Kazimierski P. The course and effects of syngas production from beechwood and RDF in updraft reactor in the light of experimental tests and numerical calculations. Ther. Sci. Eng. Progr., 8:136–144, 2018.
  • [91] Kardaś D., Kluska J., Klein M., Kazimierski P., Heda Ł. Teoretyczne i eksperymentalne aspekty pirolizy drewna i odpadów. Wydawnictwo UWM, Olsztyn, 2014. Literatura 191
  • [92] Kardaś D., Kluska J., Polesek-Karczewska S. Wprowadzenie do zagadnień zgazowania biomasy. Wydawnictwo IMP PAN, Gdańsk, 2014.
  • [93] Kardaś D., Ochrymiuk T. Podstawy modelowania procesu koksowania węgla w złożu. Nr. arch. 776/2007, IMP PAN Gdańsk, 2007.
  • [94] Kardaś D., Polesek-Karczewska S. Hiperboliczny model transportu ciepła w komorze koksowniczej. Nr. arch. 346/2008, IMP PAN Gdańsk, 2008.
  • [95] Kardaś D., Polesek-Karczewska S. Falowy charakter transportu ciepła w ośrodku dwuskładnikowym. W: Termodynamika w nauce i gospodarce, t.I, s. 483–488. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2008.
  • [96] Kardaś D., Polesek-Karczewska S. Simulation of heat and mass transfer in a retort biomass burner. Chem. Proc. Eng., 31:753–765, 2010.
  • [97] Kardaś D., Polesek-Karczewska S., Ciżmiński P., Mertas B. Modelowanie zmian ciśnienia gazów w koksowanym suchym wsadzie węglowym. Karbo, 3:83–89, 2015.
  • [98] Kardaś D., Polesek-Karczewska S., Ciżmiński P., Stelmach S. Prediction of coking dynamics for wet coal charge. Chem. Proc. Eng., 36 (3):291– 303, 2015.
  • [99] Kasperczyk J., Simonis W. Die Hochtemperaturverkokung von Steinkohle im Horizontalkammerofen bei chutbetrieb als Temperatur-ZeitReaktion. Glückauf -Forschungsh, 32(1):23–34, 1971.
  • [100] Kastanaki E., Vamvuka D., Grammelis P., Kakaras E. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Proc. Techn., 77–78:1949–1960, 2003.
  • [101] Kaviany M. Principles of heat transfer in porous media. Springer-Verlag, New York, 1995.
  • [102] Kazimierski P., Kardaś D. Wpływ temperatury na bilans węgla, wodoru oraz azotu w produktach pirolizy odpadowych zrębek brzozowych. Inż. Ap. Chem., 3(55):097–099, 2016. 192 Literatura
  • [103] Keyser M.J., Conradie M., Coertzen M., Van Dyk J.C. Effect of coal particle size distribution on packed bed pressure drop and gas flow distribution. Fuel, 85:1439–1445, 2006.
  • [104] Kingsley I. Characterization of sub-bituminous coal particles and surface structure correlation study using BET and SEM. Int. J. Adv. Eng. Sci., 6(3):1–10, 2016.
  • [105] Klose W. Überblick über Wärmetransport- und Stoffwertemodelle bei der Verkokung. Glückauf-Forschungsh., 45:35–44, 1984.
  • [106] Klose W., Nowack G. Convective mass transport in a coke oven. Fuel, 74(9):1369–1374, 1995.
  • [107] Klose W., Vervuert M. Zum zweidimensionalen Wärmetransport bei chemisch-kinetisch veränderlichen Stoffwertefunktionen. Wärme und Stoffübertragung, 20:347–360, 1986.
  • [108] Kloss C., Goniva C., Aichinger G., Pirker S. Comprehensive DEM-DPMCFD simulations–model synthesis, experimental validation and scalability. Seventh International Conference on CFD in the Minerals and Process Industries, 2009. CSIRO, Melbourne.
  • [109] Kluska J. Analiza i przebieg procesów fizykochemicznych w reaktorze zgazowującym z dolnym odbiorem gazu. Rozprawa doktorska, Instytut Maszyn Przepływowych PAN, Gdańsk, 2013.
  • [110] Kluska J., Kardaś D. Zgazowanie biomasy w reaktorze współprądowym. Wydawnictwo IMP PAN, Gdańsk, 2014.
  • [111] Kluska J., Szumowski M., Heda Ł., Kardaś D. Pomiary oraz analiza przebiegu reakcji heterogenicznych biomasy w strumieniach dwutlenku węgla i pary wodnej, UWM Olsztyn, 2013.
  • [112] Kobyłecki R. Środowiskowe aspekty termolizy biomasy. Seria Monografie nr 290, Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2014.
  • [113] Koch A., Gruber R., Cagniant D., Duchene J.M. A physicochemical study of carbonization phases. Part II. quenching experiments at the pilot scale. Fuel Proc. Technol., 48:29–37, 1996. Literatura 193
  • [114] Koch A., Gruber R., Cagniant D., Pajak J., Krzton A., Duchene J.M. A physicochemical study of carbonization phases. Part I. Tars migration and coking pressure. Fuel Proc. Technol., 45:135–153, 1995.
  • [115] Krieger-Brockett B., Glaister D.S. Wood devolatilization–sensitivity to feed properties and process variables. Research in thermochemical biomass conversion, (red. Bridgewater A.V. i in.):127–142, 1988.
  • [116] Kronberg A.E. Local nonequilibrium approach to chemical reactor modelling. PhD thesis, Twente University Enschede, 1997.
  • [117] Kwiatkowski K., Bajer K., Celińska A., Dudyński M., Korotko J., Sosnowska M. Pyrolysis and gasification of a thermally thick wood particle - effect of fragmentation. Fuel, 132:125–134, 2014.
  • [118] Lamarche P., Tazerout M., Gelix F., Kohler S., Mati K., Paviet F. Modelling of an indirectly heated fixed bed pyrolysis reactor of wood: Transition from batch to continuous staged gasification. Fuel, 106:118–128, 2013.
  • [119] Lanzetta M., Di Blasi C. Pyrolysis kinetics of wheat and corn straw. J. Anal. Appl. Pyrol., 44:181–129, 1998.
  • [120] Laurier G.C., Readyhough P.J., Sullivan G. Heat transfer in a coke oven. Fuel, 65(9):1190–1195, 1986.
  • [121] Law C.K. Combustion Physics. Cambridge University Press, 2006.
  • [122] Lemmon E.W., Huber M.L., McLinden M.O., 2013. REFPROP–NIST Reference Fluid Properties. NIST Standard Reference Database 23, DLL v9.1.
  • [123] Lin L., Strand M. Investigation of the intrinsic CO2 gasification kinetics of biomass char at medium to high temperatures . Appl. Energy, 109:220– 228, 2013.
  • [124] Lin P., Ji J., Wang Y. Modelling wood combustion under fixed bed conditions. Appl. Therm. Eng., 84(6):2116–738, 2005.
  • [125] Lin W., Feng Y., Zhamg X. Numerical study of volatiles production, fluyid flow and heat transfer in coke ovens. Appl. Therm. Eng., 81:353– 358, 2015. 194 Literatura
  • [126] Loison R., Foch P., Boyer A. Coke: quality and production. Butterworths, Cambridge, 2014.
  • [127] Lopez-Peinado A.J., Tromp P. J.J., Moulijn J.A. Quantitative heat effects associated with pyrolysis of coals, ranging from anthracite to lignite. Fuel, 68:999–1004, 1989.
  • [128] Lu H., Ip E., Scott J., Foster P., Vickers M., Baxter L.L. Effects of particle shape and size on devolatilization of biomass particle. Fuel, 89:1156–1168, 2010.
  • [129] Lv D., Xu M., Liu X., Zhan Z., Li Z., Yao H. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Proc. Techn., 91:903–909, 2010.
  • [130] Mahajan O.P., Tomita A., Walker P.L Jr. Differential scanning calorimetry studies on coal. 1. Pyrolysis in an inert atmosphere. Fuel, 55:63–69, 1976.
  • [131] Mahapatra S., Kumar S., Dasappa S. Gasification of wood particles in a co-current packed bed: Experiments and model analysis. Fuel Proc. Technol., 145:76–89, 2016.
  • [132] Mahoney M., Nomura S.,Fukuda K., Kato K., Le Bas A., Jenkins D.R., McGuire S. The mechanism of coking pressure generation II: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and contraction. Fuel, 89(7):1557–1565, 2010.
  • [133] Mahrabian R., Zahirovic S., Scharler R., Obernberger I., Kleditzsch S., Wirtz S., Scherer V., Lu H., Baxter L.L. A CFD model for thermal conversion of thermally thick biomass particles. Fuel Proc. Techn., 95:96– 108, 2012.
  • [134] Malinowski L. Relaksacyjny model przewodzenia i generacji ciepła. Prace Naukowe Politechniki Szczeciśkiej, Instytut Fizyki, Szczecin, 1995.
  • [135] Mandl C., Obernberger I., Biedermann F. Modelling of an updraft fixedbed gasifier operated with softwood pellets. Fuel, 89:3795–3806, 2010.
  • [136] Mani T., Mahinpey N., Murugan P. Reaction kinetics and mass transfer studies of biomass char gasification with CO2. Chem. Eng. Sci., 66:36– 41, 2011. Literatura 195
  • [137] Manzino E., Olampi D., Pittaluga F. Performance analysis of a woodchip downdraft gasifier: Numerical prediction and experimental validation. J. Energy Power Eng., 9:336–347, 2015.
  • [138] Marek R., Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Trans., 44:39–53, 2001.
  • [139] Martinez-Garcia J., Nussbaumer T. A one-dimensional transient solid fuel conversion model for grate combustion optimization. Combust. Sci. Technol., 187:1208–1228, 2015.
  • [140] Martinez J.D., Mahkamov K., Andrade R.V., Silva Lora E.E. Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew. Energy, 38(1):1–9, 2012.
  • [141] Mason P.E., Darvell L.I., Jones J.M., Williams A. Comparative study of the thermal conductivity of solid biomass fuels. Energy Fuels, 30:2158– 2163, 2016.
  • [142] Melgar A., Perez J.F., Laget H., Horillo A. Thermochemical equilibrium modeling of a gasifying process. Energy Convers. Manag., 48(1):59–67, 2007.
  • [143] Mermoud F., Salvador S., Van de Steene L., Golfier F. Influence of the pyrolysis heating rate on the steam gasification rate of large wood char particles. Fuel, 85(10–11):1473–1482, 2006.
  • [144] Merrick D. Mathematical models of the thermal decomposition of coal: 1. The evolution of volatile matter. Fuel, 62:534–539, 1983.
  • [145] Merrick D. Mathematical models of the thermal decomposition of coal: 2. Specific heats and heats of reaction. Fuel, 62:540–546, 1983.
  • [146] Merrick D. Mathematical models of the thermal decomposition of coal: 3. Density, porosity and contraction behavior. Fuel, 62:547–552, 1983.
  • [147] Mertas B., Sobolewski A., Różycki G. Badania gazoprzepuszczalności warstwy plastycznej węgli jako czynnika wpływającego na wielkość generowanego ciśnienia rozprężania. Karbo, 2:163–171, 2013. 196 Literatura
  • [148] Mikielewicz J. Modelowanie procesów cieplno–przepływowych (seria: Maszyny Przepływowe, t. 17). Ossolineum, Wrocław, 1995.
  • [149] Millard D.J. A study of temperature conditions in a coke oven. J. Inst. Fuel, 28:345–351, 1955.
  • [150] Minkina M., Oliveira F.L.G., Zymla V. Coal lump devolatilization and the resulting char structure and properties. Fuel Proc. Technol., 91(5):476–485, 2010.
  • [151] Mitra K., Kumar S., Vedavarz A., Moallemi M.K. Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transfer, 117:568–573, 1995.
  • [152] Miura K., Inoue K., Takatani K., Nishioka K. Analysis of steam flow in coke oven chamber by test coke ovens and a two-dimensional mathematical model. ISIJ International, 5:458–467, 1991.
  • [153] Miura K., Nishioka K. Measurements of permeability of coal. Plastic and coal layers. Cokemaking Int., 4(1):45, 1992.
  • [154] Nadziakiewicz J., Wacławiak K., Stelmach S. Procesy termiczne utylizacji odpadów. Wydawnictwo Politechniki Śląskiej, 2007.
  • [155] Nomura S., Arima T. Coke shrinkage and coking pressure during carbonization in a coke oven. Fuel, 79(13):1603–1610, 2000.
  • [156] Nomura S., Mahoney M., Fukuda K., Kato K., Le Bas A., McGuire S. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic layer permeability. Fuel, 89(7):1549–1556, 2010.
  • [157] Nomura S., Thomas K.M. Some aspects of the generation of coking pressure during coal carbonization. Fuel, 75(7):801–808, 1996.
  • [158] Oh M.S., Peters W.A., Howard J.B. And experimental and modelling study of softening coal pyrolysis. AIChE J., 35 (5):775–792, 1989.
  • [159] Osinski E.J., Barr P.V., Brimacombe J.K. Mathematical model for tall coke oven battery. Part 1. Development of thermal model for heat transfer within coke oven charge. Iron. Steel., 20:350–361, 1993. Literatura 197
  • [160] Osinski E.J., Barr P.V., Brimacombe J.K. Mathematical model for tall coke oven battery. Part 2. Calculation of gas flow and related phenomena for coke oven charge. Iron. Steel., 20:453–467, 1993.
  • [161] Patra T.K., Nimisha K.R., Sheth P.N. A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics. Energy, 116:1230–1242, 2016.
  • [162] Patra T.K., Sheth P.N. Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renew. Sustain. Energy Rev., 50:583–593, 2015.
  • [163] Perez J.F, Benjumea P.N., Melgar A. Sensitivity analysis of a biomass gasification model in fixed bed downdraft reactors: Effect of model and process parameters on reaction front. Biomass Bioenergy, 83:403–421, 2015.
  • [164] Perez J.F., Melgar A., Tinaut F.V. Modeling of fixed bed downdraft biomass gasification: Application on lab-scale and industrial reactors. Int. J. Energy Res., 38:319–338, 2014.
  • [165] Peters B. Measurements and application of a Discrete Particle Model (DPM) to simulate combustion of a packed bed of individual fuel particles. Combust. Flame, 131:132–146, 2002.
  • [166] Peters B. Thermal conversion of solid fuels. WIT Press, London, 2003.
  • [167] Peters B., Bruch C. A flexible and stable numerical method for simulating the thermal decomposition of wood particles. Chemosphere, 42:481– 490, 2001.
  • [168] Peters B., Schroder E., Bruch C. Measurements and particle resolved modelling of thermo- and fluid dynamics of a packed bed. J. Anal. Appl. Pyrolysis, 70:211–231, 2003.
  • [169] Plis P., Wilk R.K. Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier. Energy, 36:3838–3845, 2011.
  • [170] Polesek-Karczewska S. Analiza porównawcza kinetyki zgazowania røżnych rodzajów biomasy i paliw kopalnych. Nr. arch. 141/2008, IMP PAN Gdańsk, 2008. 198 Literatura
  • [171] Polesek-Karczewska S. Estimation of the structure-related share of radiation heat transfer in a carbonised packed coal bed. Fuel, 195:243–252, 2017.
  • [172] Polesek-Karczewska S., Kardaś D. Zmiana struktury cząstek paliw stałych podczas pirolizy. Nr arch. 785/2011, IMP PAN Gdańsk, 2011.
  • [173] Polesek-Karczewska S., Kardaś D. Prediction of thermal behavior of pyrolyzed wett biomass by means of model with inner wood structure. J. Therm. Sci., 24 (1):82–89, 2015.
  • [174] Polesek-Karczewska S., Kardaś D., Ciżmiński P., Mertas B. Three phase transient model of wet coal pyrolysis. J. Anal. Appl. Pyrol., 113:259–265, 2015.
  • [175] Polesek-Karczewska S., Kardaś D., Wardach-Święcicka I., Grucelski A., Stelmach S. Transient one-dimensional model of coal carbonization in stagnant packed bed. Arch. Thermodyn., 34(2):39–51, 2013.
  • [176] Polesek-Karczewska S., P. Ciżmiński, Kardaś D. Modelowanie procesu zgazowania biomasy w reaktorze współprądowym. W: Współczesne problemy w termodynamiki (Ed. Bury T., Szlęk A.), s. 775–784 (wersja elektroniczna). Wydawnictwo Instytutu Techniki Cieplnej, Gliwice, 2017.
  • [177] Polesek-Karczewska S., Szumowski M. Dane niepublikowane, IMP PAN Gdańsk, 2015.
  • [178] Polesek-Karczewska S., Turzyński T., Kardaś D., Heda Ł. Front velocity in the combustion of blends of poultry litter with straw. Fuel Proc. Techn., 176:3017–315, 2018.
  • [179] Porteiro J., Granada E., Collazo J., Patino D., Moran J.C. A model for the combustion of large particles of densified wood. Energy Fuels, 21:3151–3159, 2007.
  • [180] Porteiro J., Miguez J.L., Granada E., Moran J.C. Mathematical modelling of the combustion of a single wood particle. Fuel Proc. Techn., 87:169–175, 2006.
  • [181] Porteiro J., Patiño D., Collazo J., Granada E., Moran J., Miguez J.L. Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor. Fuel, 89:26–35, 2010. Literatura 199
  • [182] Postrzednik S. Kształtowanie się pola gradientów temperatury we wsadzie odgazowywanego paliwa stałego. Koks-Smoła-Gaz, 36(6):131–134, 1991.
  • [183] Postrzednik S. Ciepło odgazowania paliw stałych – metoda określania, podstawowe własności. Karbo-Energochemia-Ekologia, 9:220–228, 1994.
  • [184] Prawo energetyczne. Ustawa z dn. 10.04.1997 wraz z późniejszymi zmianami (stan z dn. 02.08.2017 r.).
  • [185] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Metcalf M. Numerical recipies in Fortran 90: The Art of parallel scientific computing. 2nd Edition. Cambridge University Press, Cambridge, 1986–1996.
  • [186] Prosnak W. Wprowadzenie do numerycznej mechaniki płynów. Ossolineum, Wrocław, 1993.
  • [187] Psomiadou E. Coking pressure and coke structure. Praca magisterska, Loughborough University, 1993.
  • [188] Puig-Arnavat M., Bruno J.C., Coronas A. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev., 14(9):2841–2851, 2010.
  • [189] Pyle D.L.,Zaror C.A. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem. Engng. Sci., 39(1):147–158, 1984.
  • [190] Qi L., Tang X., Wang Z., Peng X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Mining Sci. Techn., 27:371–377, 2017.
  • [191] Qian Y.,Yu Y., Xu G.,Liu X. CFD modeling of coal pyrolysis in externally heated fixed-bed reactor. Fuel, 233:685–694, 2018.
  • [192] Rath J., Wolfinger M.G., Steiner G., Krammer G., Barontini F., Cozzani V. Heat of wood pyrolysis. Fuel, 82:81–91, 2003.
  • [193] Raveendran K., Ganesh A., Khilar K.C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74 (12):1812–1822, 1995. 200 Literatura
  • [194] Rhode W., Simonis W., Peters W. Berechnung und Messung des instationären Temperaturfeldes bei der Steinkohlenpyrolyse im Koksofen. Brennstoff-Chem, 50 (1):1–8, 1969.
  • [195] Roetzel W., Putra N., Das S.K. Experiment and analysis for non-fourier conduction in materials with a non-homogeneous inner structure. Int. J. Therm. Sci., 42:541–552, 2003.
  • [196] Ronewicz K. Piroliza cząstki biomasy w strumieniu gorących gazów. Rozprawa doktorska, Instytut Maszyn Przepływowych PAN, Gdańsk, 2016.
  • [197] Roy P.C., Datta A., Chakraborty N. Modelling of a downdraft biomass gasifier with finite rate kinetics in the reduction zone. Int. J. Energy Res., 33:833–851, 2009.
  • [198] Ryu C., Yang Y.B., Khor A., Yates N.E., Sharifi V.N., Swithenbank J. Effect of fuel properties on biomass combustion: Part I. Experiments–fuel type, equivalence ratio and particle size. Fuel, 85:1039–1046, 2006.
  • [199] Saastamoinen J.J., Richard J.R. Simultaneous drying and pyrolysis of solid fuel particles. Combust. Flame, 106:288–300, 1996.
  • [200] Saastamoinen J.J., Taipale R., Horttanainen M., Sarkomaa P. Propagation of ignition front in beds of wood particles. Combust. Flame, 123:214–226, 2000.
  • [201] Sato H., Aoki H., Miura T., Patrick J.W. Estimation of thermal stress in lump coke. Fuel, 76 (4):303–310, 1997.
  • [202] Sato H., Aoki H., Miura T., Patrick J.W. Numerical analysis of macrocrack formation behaviour in lump coke. Fuel, 76 (9):879–885, 1997.
  • [203] Ściążko M. Opracowanie modelu wytwarzania ciśnienia przez złoże termicznie uplastycznionych ziaren węglowych, Instytut Chemicznej Przeróbki Węgla Zabrze, 2005.
  • [204] Ściążko M. Modele klasyfikacji węgla w ujęciu termodynamicznym i kinetycznym. Rozprawa habilitacyjna, Kraków, 2010.
  • [205] Sciban M., Radetic B., Kevresan Z., Klasnja M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Biores. Technol., 98:402–409, 2007. Literatura 201
  • [206] Senneca O. Kinetics of pyrolysis, combustion and gasification of tree biomass fuels. Fuel Proc. Techn., 88:87–97, 2007.
  • [207] Seo D.K., Lee S.K., Kang M.W., Hwang J., Yu T.U. Gasification reactivity of biomass chars with CO2. Biomass Bioenergy, 34:1946–1953, 2010.
  • [208] Sharma A. Kr. Equilibrium and kinetic modeling of char reduction reactions in a downdraft biomass gasifier: A comparison. Solar Energy, 82:918–928, 2008.
  • [209] Sharma A.K. Modeling fluid and heat transport in the reactive, porous bed of downdraft (biomass) gasifier. Int. J. Heat Fluid Flow, 28:1518– 1530, 2007.
  • [210] Sharma R.K., Wooten J.B., Baliga V.L., Lin X., Chan W.G., Hajaligol M.R. Characterization of chars from pyrolysis of lignin. Fuel, 83 (11- 12):1469–1482, 2004.
  • [211] Sharma S., Sheth P.N. Air-steam biomass gasification: Experiments, modeling and simulation. Energy Convers. Manag., 110:307–318, 2016.
  • [212] Siau J.F. Transport processes in wood. Springer, Berlin, 1984.
  • [213] Simone M., Nicolella C., Tognotti L. Numerical and experimental investigation of downdraft gasification of woody residues. Biores. Technol., 133:92–101, 2013.
  • [214] Singh B.P., Kaviany M. Modeling radiative heat transfer in packed beds. Int. J. Heat Mass Transf., 35:1397–1405, 1992.
  • [215] Sircar I., Sane A., Wang W., Gore J.P. Experimental and modeling study of pinewood char gasification with CO2. Fuel, 119:38–46, 2014.
  • [216] Sjöström J., Blomqvist P. Direct measurements of thermal properties of wood pellets: Elevated temperatures, fine fractions and moisture content. Fuel, 134:460–466, 2014.
  • [217] Słupik Ł., Fic A., Buliński Z., Nowak A.J., Kosyrczyk L., Łabojko G. CFD model of the coal carbonization process. Fuel, 150:415–424, 2015. 202 Literatura
  • [218] Slavin A.J., Arcas V., Greenhalgh C.A., Irvine E.R., Marshall D.B. Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature. Int. J. Heat Mass Transfer, 45:4151–4161, 2002.
  • [219] Sobieski W., Lipiński S., Dudda W., Trykozko A., Marek M., Wiącek J., Matyka M., Gołembiewski J. Granularne ośrodki porowate. Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Uniwersytet WarmińskoMazurski, Olsztyn, 2016.
  • [220] Sova D., Porojan M., Bodelean B., Huminic G. Effective thermal conductivity models applied to wood briquettes. Int. J. Therm. Sci., 124:1–12, 2018.
  • [221] Speight J.G. Handbook of coal analysis. John Wiley&Sons Inc., Hoboken, New Jersey, 2005.
  • [222] Stanger R., Xie W., Wall T., Lucas J., Mahoney M. Dynamic Elemental Thermal Analysis: A technique for continuous measurement of carbon, hydrogen, oxygen chemistry of tar species evolved during coal pyrolysis. Fuel, 103:764–772, 2013.
  • [223] Stelmach S., Kardaś D., Polesek-Karczewska S. Eksperymentalna weryfikacja niefourierowskiego transportu ciepła w koksowanym wsadzie węglowym. Karbo, 56(3):156–165, 2011.
  • [224] Strezov V., Lucas J.A., Strezov L. Quantifying the heats of coal devolatilization. Metall. Mater. Trans. B, 31 B:1125–1131, 2000.
  • [225] Strezov V., Lucas J.A., Strezov L. Investigation of the swelling pressure development during slow pyrolysis of thermoplastic coals. J. Anal. Appl. Pyrol., 74(1-2):88–95, 2005.
  • [226] Strezov V., Lucas J.A., Wall T.F. Effect of pressure on the swelling of density separated coals. Fuel, 84(10):1238–1245, 2005.
  • [227] Strugała A. Changes of porosity during carbonization of bitouminous coals:Effects due to pores with radii less than 2500 nm. Fuel, 81:1119– 1130, 2002. Literatura 203
  • [228] Strugała A. Empirical relationships for the determination of yield and true density of chars produced within the temperature range of coal plasticity. Gospodarka Surowcami Mineralnymi–Mineral Resources Management, 18:37–62, 2002.
  • [229] Struis R.P.W.J., von Scala C., Stucki S., Prins R. Gasification reactivity of charcoal with CO2. Part I: Conversion and structural phenomena. Chem. Eng. Sci., 57:3581–3592, 2002.
  • [230] Strzelecki T., Kostecki S., Żak S. Modelowanie przepływów przez ośrodki porowate. Dolnośląskie Wyd. Edukacyjne, Wrocław, 2008.
  • [231] Suleiman B.M., Larfeldt J., Leckner B., Gustavsson M. Thermal conductivity and diffusivity of wood. Wood Sci. Techn., 33:465–473, 1999.
  • [232] Suuberg E.M., Oja V. Vapor pressures and heats of vaporization of primary coal tars. Report DOE/PC92544-18. Pittsburgh, 1997.
  • [233] Thunman H., Leckner B. Thermal conductivity of wood–models for different stages of combustion. Biomass Bioenergy, 23:47–54, 2002.
  • [234] Thunman H., Leckner B. Co-current and counter-currant fixed bed combustion of biofuel–a comparison. Fuel, 82:275–283, 2003.
  • [235] Thunman H., Leckner B., Niklasson F., Johnsson F. Combustion of wood particles - a particle model for Eulerian calculations. Combust. Flame, 129:30–46, 2002.
  • [236] Thurner F., Mann U. Kinetic investigation of wood pyrolysis. Ind. Eng. Chem. Res., 20(3):482–488, 1991.
  • [237] Tinaut F.V., Melgar A., Perez J.F., Horrillo A. Effect of biomass particle size and air superficial velocity on the gasification processin a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Proc. Technol., 89:1076–1089, 2008.
  • [238] Tomeczek J., Palugniok H. Specific heat capacity and enthalpy of coal pyrolysis. Fuel, 75:1089–1093, 1996.
  • [239] Tramer A., Ściążko M., Karcz A. Techniczne aspekty wykorzystania gazu koksowniczego do pozyskiwania wodoru. Przemysł chemiczny, 84/11:815–819, 2005. 204 Literatura
  • [240] Turns S. An introduction to combustion. McGraw-Hill, Inc., 1996.
  • [241] Tursun Y., Xu S., Wang G., Wang C.W., Xiao Y. Tar formation during co-gasification of biomass and coal under different gasification condition. J. Anal. Appl. Pyrol., 111:191–199, 2015.
  • [242] Tzou D.Y. An engineering assessment to the relaxation time in thermal wave propagation. Int. J. Heat Mass Transfer, 36(7):1845–1851, 1993.
  • [243] Tzou D.Y. Macro- to microscale heat transfer. Series in Chemical and Mechanical Engineering, Taylor& Francis, 1997.
  • [244] U.S. Dept. Agriculture, Forest Service. Wood Handbook–Wood as an engineering material, Chap. 3. Technical Report FPL-GTR-113, Forest Products Laboratory, Madison WI, 1999.
  • [245] Vamvuka D., Kakaras E., Kastanaki E., Grammelis P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel, 82:1949–1960, 2003.
  • [246] Vijeu R., Gerun L., Tazeriut M., Castelain C., Bellettre J. Dimensional modelling of wood pyrolysis using a nodal approach. Fuel, 87:3292–3303, 2008.
  • [247] Voller V.R., Cross M., Merrick D. Mathematical models of the thermal decomposition of coal: 5. Distribution of gas flow in a coke oven charge. Fuel, 62:562–566, 1983.
  • [248] Wałowski G., Filipczak G. Ocena hydrodynamiki przepływu gazu przez ośrodek szczelinowo-porowaty. Inż. Ap. Chem., 52(6):581–582, 2013.
  • [249] Wałowski G., Filipczak G. Gazoprzepuszczalność materiałów porowatych o anizotropowej strukturze. Inż. Ap. Chem., 55(6):245–250, 2016.
  • [250] Wang Y., Kinoshita C.M. Kinetic model of biomass gasification. Solar Energy, 51(1):19–25, 1993.
  • [251] Wardach-Święcicka I. Modelowanie procesów fizykochemicznych w cząstce paliwa stałego w strumieniu gorących gazów. Rozprawa doktorska, Instytut Maszyn Przepływowych PAN, Gdańsk, 2016.
  • [252] Whitty K., Backman R., Huppa M. Influence of pressure on pyrolysis of black liquor: 1. Swelling. Biores. Technol., 99(30:663–670, 2008. Literatura 205
  • [253] Witos J. Wyznaczanie niestacjonarnego pola temperatury w komorze koksowniczej za pomocą pomiarów bezpośrednich i obliczeń numerycznych. Rozprawa doktorska, Akademia Górniczo-Hutnicza , Kraków, 1977.
  • [254] Witos J., Byrtus F. Wyznaczanie niestacjonarnego pola temperatury w komorze koksowniczej dla wsadu ubijanego przy zastosowaniu metody bezpośredniego pomiaru i obliczeń numerycznych. Koks-SmołaGaz, 8:212–219, 1979.
  • [255] Wurzenberger J.C., Wallner S., Raupenstrauch H., Khinsat J.G. Thermal conversion of biomass: Comprehensive reactor and particle modeling. AIChE J, 48(10):2398–2411, 2002.
  • [256] Yang W., Ponzio A., Lucas C., Blasiak W. Performance analysis of a fixed-bed biomass gasifier using high-temperature air. Fuel, 87:235–245, 2006.
  • [257] Yang Y.B., Goh Y.R., Zakaria R., Nasserzadeh V., Swithenbank J. Mathematical modelling of MSW incineration on a travelling bed. Waste Manag., 22(4):369–380, 2002.
  • [258] Yang Y.B., Phan A.N., Ryu C., Sharifi V., Swithenbank Y. Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser. Fuel, 86:169–180, 2007.
  • [259] Yang Y.B., Ryu C., Khor A., Sharifi V.N., Swithenbank J. Fuel size effect on pinewood combustion in a packed bed. Fuel, 84:2026–2038, 2005. [
  • [260] Yang Y.B., Yamauchi H., Nasserzadeh V., Swithenbank J. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed. Fuel, 82:2205–2221, 2003.
  • [261] Yu J., Strezov V., Lucas J., Wall T. Swelling behaviour of individual coal particles in the single particle reactor. Fuel, 82(15-17):1977–1987, 2003.
  • [262] Zainal Z.A., Ali R., Lean C.H., Seetharamu K.N. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manag., 42(12):1499–1515, 2001. 206 Literatura
  • [263] Założenia Polityki Energetycznej Polski do 2020 roku: dokument rządowy przyjęty przez Radę Ministrów 22 lutego 2000 r. Ministerstwo Gospodarki, Warszawa.
  • [264] Zaror C.A., Pyle D.L. The pyrolysis of biomass: a general review. Proc. Ind. Acad. Sci., 5:269–285, 1982.
  • [265] Zhang Q., Feng Y.H., Zhang X.X., Wang M.D.,Yang J.F., Xu Y. Decoupling simulation of thermal processes in coupled combustion and coking chambers of a coke oven. ISIJ Inter., 53(6):995–1001, 2013.
  • [266] Zhang Y., Zhai M., Wang X., Sun J., Dong P., Liu P., Zhu Q. Preparation and characteristics of biomass char. BioResourc., 10(2):3017–3026, 2015.
  • [267] Zhao Y., Qu F., Wan Z., Zhang Y., Liang W., Meng Q. Experimental investigation of correlation between permeability variation and pore structure during coal pyrolysis. Transport Porous Med., 82(2):401–412, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caf222cc-308d-45b4-b380-9c396f7d3dbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.