PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of pulse‑electroformed Cu/SiC composite tubes with enhanced mechanical and anti‑corrosion properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Traditional manufacturing technologies have several limitations to produce precise, small-scale tubular structures while retaining the required functional capabilities. To address this issue, the current work proposes a cost-effective approach for the manufacturing of composite-tubular structures using an “in-house pulse electroforming” setup. With the above-mentioned technique, we have been able to fabricate sustainable composite microtubes with an unprecedented thickness of a mere 20 μm, a feat that has eluded scientific exploration until now. Nanosized SiC particles were also integrated into the Cu matrix to improve the mechanical (via microhardness and compression testing) and corrosion characteristics. The impact of different process variables, such as pulse frequency and duty cycle on surface morphology, microhardness, compression, corrosion, and hydrophobicity were investigated. Cu/SiC microtube exhibits a maximum hardness of 160 HV, which is substantially higher than that of the bare Cu microtubes. The Cu/SiC composite microtubes also exhibit 51% anticorrosion efficiency and approximately two times higher impedance than bare copper microtubes. Furthermore, the compression test confirms the strength of the electroformed Cu/SiC microtubes. Additionally, prediction models for microhardness of structures were developed using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Compared to the ANN model, which produced an R2 value of 0.96, the ANFIS model showed more accurate predictions of microhardness values, with an R2 value of 0.99. This fabrication methodology can be envisioned for developing precise, conductive, and anticorrosive tubular structures for various engineering applications.
Rocznik
Strony
art. no. e19, 2024
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
  • Montana Technological University, Butte, MT, USA
autor
  • Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
Bibliografia
  • 1. Alvi MA, Al-Ghamdi AA, Shaheer Akhtar M. Synthesis of ZnO nanostructures via low temperature solution process for photocatalytic degradation of rhodamine B dye. Mater Lett. 2017;204:12–5.https://doi.org/10.1016/j.matlet.2017.06.005.
  • 2. Mehrpouya M, Emamian S. Recent advantages in laser fabrication of micro-channel heat exchangers. Materwiss Werksttech.2017;48(3–4):205–9. https://doi.org/10.1002/MAWE.201600759.
  • 3. Furushima T, Manabe K. Superplastic micro-tubes fabricated bydieless drawing processes. In: Superplastic forming of advanced metallic materials. 2011. p. 327–360. https:// doi. org/ 10. 1533/9780857092779.3.327.
  • 4. Zhang Q, et al. Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electro-less co-deposition technique. Sci Rep. 2017. https://doi.org/10.1038/S41598-017-01439-3.
  • 5. Razali AR, Qin Y. A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 2013. https://doi. org/10.1016/j.proeng.2013.02.086.
  • 6. Vilaró I, Yagüe JL, Borrós S. Superhydrophobic copper surfaces with anticorrosion properties fabricated by solventless CVD methods. ACS Appl Mater Interfaces. 2017;9(1):1057–65. https://doi.org/10.1021/ACSAMI.6B12119/ASSET/IMAGES/LARGE/AM-2016-12119D_0007.JPEG.
  • 7. Lassègue P, et al. Laser powder bed fusion (L-PBF) of Cu and CuCrZr parts: Influence of an absorptive physical vapor deposition (PVD) coating on the printing process. Addit Manuf.2021;39: 101888. https:// doi. org/ 10. 1016/J. ADDMA. 2021.101888.
  • 8. Rai PK, Gupta A. Development of durable anticorrosion super-hydrophobic electroformed copper tubular structures. J ManufProcess. 2023;85:236–45. https://doi.org/10.1016/j.jmapro.2022.11.048.
  • 9. Rai PK, Gupta A. Nanofunctionalized pulse-electroformed copper/graphene oxide tubular composite for efficient textiledye degradation under visible light irradiation. Appl Nanosci (Switzerland). 2022;12(10):3045–60. https:// doi. org/ 10. 1007/s13204-022-02612-5.
  • 10. Chan KC, Chan WK, Qu NS. Effect of current wave form on the deposit quality of electroformed nickels. J Mater Process Technol. 1999;89–90:447–50. https://doi.org/10.1016/S0924-0136(99)00053-9.
  • 11. Biswal HJ, Kaur JJ, Vundavilli PR, Gupta A. Recent advances in energy field assisted hybrid electrodeposition and electroforming processes. CIRP J Manuf Sci Technol. 2022;38:518–46. https://doi.org/10.1016/J.CIRPJ.2022.05.013.
  • 12. Biswal HJ, Vundavilli PR, Mondal K, Shetti NP, Gupta A. ZnO/CuO nanostructures anchored over Ni/Cu tubular films via pulse electrodeposition for photocatalytic and antibacterial applications. Mater Sci Energy Technol. 2023;6:237–51. https://doi.org/10.1016/j.mset.2023.01.001.
  • 13. Rai PK, Gupta A. Investigation of surface characteristics and effect of electrodeposition parameters on nickel-based composite coating. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2020.11.182.
  • 14. Allahkaram SR, Golroh S, Mohammadalipour M. Properties ofAl2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating. Mater Des.2011;32(8–9):4478–84. https://doi.org/10.1016/J.MATDES.2011.03.042.
  • 15. Zhu J, Liu L, Zhao H, Shen B, Hu W. Microstructure and performance of electroformed Cu/nano-SiC composite. Mater Des.2007;28(6):1958–62. https://doi.org/10.1016/J.MATDES.2006.04.021.
  • 16. Zhang R, Gao L, Guo J. Preparation and characterization of coated nanoscale Cu/SiCp composite particles. Ceram Int.2004;30(3):401–4. https:// doi. org/ 10. 1016/ S0272- 8842(03)00123-8.
  • 17. Asnavandi M, Ghorbani M, Kahram M. Production of Cu–Sn–graphite–SiC composite coatings by electrodeposition. Surf CoatTechnol. 2013;216:207–14. https:// doi. org/ 10. 1016/J. SURFCOAT.2012.11.042.
  • 18. Hashemi M, Mirdamadi S, Rezaie HR. Effect of SiC nanoparticles on microstructure and wear behavior of Cu-Ni-W nanocrystalline coating. Electrochim Acta. 2014;138:224–31. https://doi.org/10.1016/J.ELECTACTA.2014.06.084.
  • 19. Zhang B, et al. Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties. Int J Miner Metall Mater. 2022;29(1):153–60. https://doi.org/10.1007/S12613-021-2307-1/METRICS.
  • 20. Li J, Lin O, Cheng C, Wang W, Xu C, Ren L. Fabrication of a Ni/SiC composite coating on steel surface with excellent corrosion inhibition performance. J Mater Process Technol. 2021;290:116987. https://doi.org/10.1016/J.JMATPROTEC.2020.116987.
  • 21. Biswal HJ, Vundavilli PR, Gupta A. Fabrication and characterization of nickel microtubes through electroforming: deposition optimization using evolutionary algorithms. J Mater Eng Perform.2021. https://doi.org/10.1007/s11665-021-06223-z.
  • 22. Biswal HJ. RSC Advances High aspect ZnO nanorod growth overelectro deposited tubes for photocatalytic degradation of EtBr dye.RSC Adv. 2020;11:1623–34. https:// doi. org/ 10. 1039/ D0RA08124H.
  • 23. Jyoti H, Srivastava T, Vundavilli PR, Gupta A. Facile fabrication of hydrophobic ZnO nanostructured nickel microtubes through pulse electrodeposition as promising photocatalyst for wastewater remediation. J Manuf Process. 2022;75(December 2021):538–51.https://doi.org/10.1016/j.jmapro.2022.01.001.
  • 24. Li X, Zhu Y, Xiao G. Application of artificial neural networks to predict sliding wear resistance of Ni–TiN nanocomposite coatings deposited by pulse electrodeposition. Ceram Int.2014;40(8):11767–72. https:// doi. org/ 10. 1016/J. CERAM INT.2014.04.005.
  • 25. Xu Y, Zhu Y, Xiao G, Ma C. Application of artificial neural networks to predict corrosion behavior of Ni–SiC composite coatings deposited by ultrasonic electrodeposition. Ceram Int.2014;40(4):5425–30. https://doi.org/10.1016/J.CERAMINT.2013.10.125.
  • 26. Zarezadeh A, Shishesaz MR, Ravanavard M, Ghobadi M, Zareipour F, Mahdavian M. Electrochemical and Mechanical Properties of Ni/g-C3N4 nanocomposite coatings with enhanced corrosion protective properties: a case study for modeling the corrosion resistance by ANN and ANFIS models. J Appl Comput Mech. 2023;9(3):590–606. https://doi.org/10.22055/JACM.2021.38403.3220.
  • 27. Mirsaeed-Ghazi SM, Allahkaram SR, Molaei A. Development and investigation of Cu/SiC nano-composite coatings via various parameters of DC electrodeposition. Tribol Int. 2019;134(October2018):221–31. https://doi.org/10.1016/j.triboint.2019.01.034.
  • 28. Jiang M, Ma C, Xia F, Zhang Y. Application of artificial neural networks to predict the hardness of Ni–TiN nanocoatings fabricated by pulse electrodeposition. Surf Coat Technol.2016;286:191–6. https://doi.org/10.1016/J.SURFCOAT.2015.12.032.
  • 29. Mafakheri E, Tahmasebi P, Ghanbari D. Application of artificial neural networks for prediction of coercivity of highly ordered cobalt nanowires synthesized by pulse electrodeposition. Measurement. 2012;45(6):1387–95. https://doi.org/10.1016/J.MEASUREMENT.2012.03.027.
  • 30. Alhumade H, Olabi AG, Rezk H, Shinde PA, Ali Abdelkareem M. Marine predators optimization and ANFIS as an effective tools formaximization of specific capacity of G-NiO electrode for electro-chemical energy storage. Ain Shams Eng J. 2023;14(10):102210.https://doi.org/10.1016/J.ASEJ.2023.102210.
  • 31. Hayati M, Rashidi AM, Rezaei A. Prediction of grain size of nanocrystalline nickel coatings using adaptive neuro-fuzzy inference system. Solid State Sci. 2011;13(1):163–7. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2010.11.007.
  • 32. Low CTJ, Wills RGA, Walsh FC. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol. 2006;201(1–2):371–83. https://doi.org/10.1016/J.SURFCOAT.2005.11.123.
  • 33. Bahadormanesh B, Dolati A, Ahmadi MR. Electrodeposition and characterization of Ni-Co/SiC nanocomposite coatings. J Alloys Compd. 2011;509(39):9406–12. https://doi.org/10.1016/J.JALLCOM.2011.07.054.
  • 34. Balasubramanian A, Srikumar DS, Raja G, Saravanan G, Mohan S. Effect of pulse parameter on pulsed electrodeposition of copperon stainless steel. Surf Eng. 2009;25(5):389–92. https://doi.org/10.1179/026708408X344680.
  • 35. Lajevardi SA, Shahrabi T. Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings. Appl Surf Sci. 2010;256(22):6775–81. https://doi.org/10.1016/J.APSUSC.2010.04.088.
  • 36. Thiemig D, Lange R, Bund A. Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites. Electrochim Acta. 2007;52(25):7362–71. https://doi.org/10.1016/J.ELECTACTA.2007.06.009.
  • 37. Liu H, Wang H, Ying W, Liu W, Wang Y, Li Q. Influences of duty cycle and pulse frequency on properties of Ni-SiC nanocomposites fabricated by pulse electrodeposition. Int J Electrochim Sci.2020;15:10550–69. https://doi.org/10.20964/2020.10.33.
  • 38. Gül H, Kili F, Uysal M, Aslan S, Alp A, Akbulut H. Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite(MMC) coatings produced by electrodeposition. Appl Surf Sci.2012;258(10):4260–7. https://doi.org/10.1016/J.APSUSC.2011.12.069.
  • 39. Pradhan AK, Das S. Pulse-reverse electrodeposition of Cu-SiC nanocomposite coating: Effect of concentration of SiC in the electrolyte. J Alloys Compd. 2014;590:294–302. https://doi.org/10.1016/j.jallcom.2013.12.139.
  • 40. Rai PK, Gupta A. Development of a model for prediction and optimization of hardness of electrodeposited Cu/SiC composite using RSM and ANN-PSO. Volume 2: manufacturing equipment andautomation; manufacturing processes; manufacturing systems;nano/micro/meso manufacturing; quality and reliability. 2023.https://doi.org/10.1115/MSEC2023-101504.
  • 41. Aruna ST, Bindu CN, Ezhil Selvi V, William Grips VK, Rajam KS. Synthesis and properties of electrodeposited Ni/ceria nano-composite coatings. Surf Coat Technol. 2006;24(200):6871–80.https://doi.org/10.1016/J.SURFCOAT.2005.10.035
  • 42. Yuan XZ, Song C, Wang H, Zhang J. Electrochemical impedance spectroscopy in PEM fuel cells: Fundamentals and applications.In: Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. 2020. p. 1–420. https://doi.org/10.1007/978-1-84882-846-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caf1afaa-beda-4656-a5fa-554bf4d5d4cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.