PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the influence of the geometric features of the filler on the thermal properties and structure of the composites in the polypropylene matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research on polymer composites based on polypropylene filled with various fillers. The physical and thermal properties of the composites are the result of the used polymer matrix as well as the properties and geometric features of the used filler. The geometric shape of the filler is particularly important in the processing of plastics in which the flow is forced, and high shearing tension occurs, which determines the high macromolecular orientation and specific arrangement of the filler particles. Thermal analysis (STA) was used in the research and photographs were taken using a scanning electron microscope (SEM) of fractures of polymer composites. The following fillers were used: talc, fibreglass, glass beads, and a halogen-free nitrogen-phosphorus flame retardant. The test material was obtained by extrusion. Shapes for strength tests, which were subjected to scanning microscopy tests after a static tensile test, were obtained by injection. The carried-out tests allowed us to determine the influence of the type and shape of individual fillers on structural changes in the structure of polypropylene composites and the degree of sample weight loss in a specific temperature range, depending on the used filler.
Rocznik
Strony
art. no. e147064
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
Bibliografia
  • [1] J.F. Rabek, Modern knowledge about polymers, PWN, Warszawa, 2016 (in Polish).
  • [2] S. Norwiński and P. Postawa, “Evaluation of flammability by oxygen index (OI) of selected composites of polypropylene”, Plast. Process., vol. 22, pp. 285–293, 2016. (in Polish)
  • [3] S. Norwiński, P. Postawa, and R. Sachajko, “Analysis of changes in thermo-mechanical properties of polypropylene composites”, Plast. Process., vol. 22, pp. 294–301, 2016. (in Polish)
  • [4] K. Panneerselvam, S. Aravindan, and A.N. Haq, “Study on resistance welding of glass fiber reinforced thermoplastic composites”, Mater. Des., vol. 41, pp. 453–459, 2012, doi: 10.1016/j.matdes.2012.05.025.
  • [5] R. Chollakup, R. Tantatherdtam, S. Ujjin, and K. Sriroth, “Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics”, J. Appl. Polym. Sci., vol. 119, pp. 1952–1960, 2011, doi: 10.1002/app.32910.
  • [6] C. Subramanian, S.B. Deshpande, and S. Senthilvelan, “Effect of reinforced fiber length on the damping performance of thermoplastic composites”, Adv. Compos. Mater., vol. 20, no. 4, pp. 319–335, 2011, doi: 10.1163/092430410X550872.
  • [7] Y. Yang, R. Boom, B. Irion, D.J. van Heerden, and P. Kuiper, “Recycling of composite materials”, Chem. Eng. Process., vol. 51, pp. 53–68, 2012, doi: 10.1016/j.cep.2011.09.007.
  • [8] F. Rezaei, R. Yunus and N.A. Ibrahim, “Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites”, Mater. Des., vol. 30, pp. 260–263, 2009, doi: 10.1016/j.matdes.2008.05.005.
  • [9] M. Gebhardt, “Kunststoffe im Automobil: Der Stoff aus dem die Schäume sind”, Autohaus. [Online]. Available: https://www.autohaus.de/nachrichten/autohersteller/kunststoffe-im-automobil-der-stoff-aus-dem-die-schaeume-sind-2722267.
  • [10] A. Codolini, Q.M. Li, and A. Wilkinson, “Influence of machining process on the mechanical behaviour of injection-moulded specimens of talc-filled Polypropylene”, Polym. Test., vol. 62, pp. 342–347, 2017, doi: 10.1016/j.polymertesting.2017.07.018.
  • [11] J. Hou, G. Zhao, and G. Wang, “Polypropylene/talc foams with high weight-reduction and improved surface quality fabricated by mold-opening microcellular injection molding”, J. Mater. Res. Technol-JMRT, vol. 12, pp. 74–86, 2021, doi: 10.1016/j.jmrt.2021.02.077.
  • [12] G. Zhai, Y. Ding, Z. Ma, Z. Wei, X. Li, and B. Liu, “Novel triaxial experimental investigation on compressive behavior of hollow glass microspheres composites under varied temperature environments”, Polym. Test., vol. 115, p. 107745, 2022, doi: 10.1016/j.polymertesting.2022.107745.
  • [13] J. Iwko, P. Pikosz, and R. Mrzygłód, “Wpływ zawartości talku w LDPE na właściwości Kompozytu”, Tworzywa Sztuczne w Przemyśle, vol. 2016, no. 3, 2016. (in Polish)
  • [14] Z. Wang et al., “Preparation of lightweight glass microsphere/Al sandwich composites with high compressive properties”, Mater. Lett., vol. 308, p. 131220, 2022, doi: 10.1016/j.matlet.2021.131220.
  • [15] H. Sun et al., “The influence of melt temperature on the crystal orientation of polypropylene containing talc”, Polymer, vol. 256, p. 125179, 2022, doi: 10.1016/j.polymer.2022.125179.
  • [16] J.-W. Wee, M.-S. Choi, H.-C. Hyun, J.-H. Hwang, and B-H. Choi, “Effect of weathering-induced degradation on the fracture and fatigue characteristics of injection-molded polypropylene/talc composites”, Int. J. Fatigue, vol. 117, pp. 111–120, 2018, doi: 10.1016/j.ijfatigue.2018.07.022.
  • [17] A. Bodur, S. Sahin, Y. Sahin, and M. Inal, “Modelling of the Flexural Strength of Low Flow Polypropylene Talc/Colemanite Hybrid Composite Materials with Taguchi and ANFIS Methods”, IFAC-PapersOnLine, vol. 51, pp. 271–276, 2018, doi: 10.1016/j.ifacol.2018.11.300.
  • [18] A. Pearson, M. Duncan, A. Hammami, and H.E. Nagui, “Interfacial adhesion and thermal stability of high-density polyethylene glass fiber composites”, Compos. Sci. Technol., vol. 227, p. 109570, 2022, doi: 10.1016/j.compscitech.2022.109570.
  • [19] L. Delva, S. Hubo, L. Cardon, and K. Ragaert, “On the role of flame retardants in mechanical recycling of solid plastic waste”, Waste Manage., vol. 82, pp. 198–206, 2018, doi: 10.1016/j.wasman.2018.10.030.
  • [20] G.O. Rissi, “Fillers for Packaging Applications”, in Fillers, Intechopen, 2020, doi: 10.5772/intechopen.93252.
  • [21] M. Sarathiraja, S. Devanathan, and M. Kannana, “Tuning parameters for flame-retardant coatings on wood and Polymer”, Mater. Today-Proc., vol. 24, pp. 1138–1146, 2020, doi: 10.1016/j.matpr.2020.04.427.
  • [22] PN-EN ISO 4589-2: 2006 Plastics – flammability determination using the oxygen indicator method. Room temperature test. (in Polish)
  • [23] M. Półka, Flammability test using the oxygen index method, SGSP, Warszawa 1996. (in Polish)
  • [24] D.M. Jarząbek, “The impact of weak interfacial bonding strength on mechanical properties of metal matrix – Ceramic reinforced composites”, Compos. Struct., vol. 201, pp. 352–362, 2018, doi: 10.1016/j.compstruct.2018.06.071.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caeeaf84-ca62-477b-bcff-649fa9751f7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.