PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of sulfur and iron fertilization on nutrient utilization by plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the three-year pot experiment was to determine the effect of standard mineral fertilization enriched with sulfur and iron on the content of nitrogen and sulfur in plants and on nutrient utilization by plants. Abundance of sulfates in soil after sulfur fertilization was also assessed. The direct effect of fertilization was assessed during the first and second year of the pot experiment, and the after-effect was analyzed during the third year. Rape (first year) and maize (second and third year) were the test plants. Solid mineral fertilizers (A: a mixture of ammonium nitrate and dolomite; B: a mixture of ammonium nitrate and sulfate) enriched with iron sulfate were used. Nitrogen content in the plants varied depending on applied fertilization as well on plant species and part. Sulfur application increased sulfur content in the aboveground parts of plants by 25-457% and in roots by 95-708%. Iron application ambiguously influenced nitrogen and sulfur content in the plants. Hovewer, simultaneous application of iron and sulfur (as fertilizer B enriched with iron) resulted in the highest coefficient of nitrogen (84%) and sulfur (39%) utilization. Sulfur fertilization caused a 5-20 fold increase in sulfate sulfur content in the soil.
Słowa kluczowe
Rocznik
Tom
Strony
53--65
Opis fizyczny
Bibliogr. 23 poz., wykr., tab.
Twórcy
autor
  • University of Agriculture in Krakow Faculty of Agriculture and Economics Department of Agricultural and Environmental Chemistry Al. Mickiewicza 21 PL 31-120 Kraków Phone: +48 12 662 43 48
  • University of Agriculture in Krakow Faculty of Agriculture and Economics Department of Agricultural and Environmental Chemistry Al. Mickiewicza 21 PL 31-120 Kraków
Bibliografia
  • Aref, F. (2012). Manganese, iron and copper contents in leaves of maize plants (Zea mays L.) grown with different boron and zinc micronutrients. African Journal of Biotechnology 11(4): 896-903. DOI: 10.5897/AJB11.165.
  • Balk, J., Pilon, M. (2011). Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends in Plant Science 16: 218-226. DOI: 10.1016/j.tplants.2010.12.006.
  • De Bona, F.D., Fedoseyenko, D., von Wirén, N., Monteiro, F.A. (2011). Nitrogen utilization by sulfur-deficient barley plants depends on the nitrogen form. Environmental and Experimental Botany 74: 237-244. DOI: 10.1016/j.envexpbot.2011.06.005.
  • Engardt, M., Simpson, D., Schwikowski, M., Granat, L. (2017). Deposition of sulphur and nitrogen in Europe 1900-2050. Model calculations and comparison to historical observations. Tellus B: Chemical and Physical Meteorology 69: 1328945. DOI: 10.1080/16000889.2017.1328945.
  • Fernández-Escobar, R., Benlloch, M., Herrera, E., Garcı́ a-Novelo, J.M. (2004). Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Scientia Horticulturae 101(1-2): 39-49. DOI: 10.1016/j.scienta.2003.09.008.
  • Filipek-Mazur, B., Gorczyca, O., Tabak, M. (2017). Wpływ nawozów mineralnych zawierających siarkę na zawartość azotu, siarki oraz aminokwasów siarkowych w nasionach rzepaku jarego i ziarnie pszenicy ozimej. Fragmenta Agronomica 34(3): 33-43.
  • Filipek-Mazur, B., Tabak, M., Gorczyca, O., Bobowiec, A. (2018). Oddziaływanie nawozów mineralnych zawierających siarkę na właściwości chemiczne gleby. Fragmenta Agronomica 35(3): 55-65. DOI: 10.26374/fa.2018.35.29.
  • Filipek-Mazur, B., Tabak, M., Koncewicz-Baran M., Bobowiec A. (2019). Mineral fertilizers with iron influence spring rape, maize and soil properties. Archives of Agronomy and Soil Science, in print. DOI: 10.1080/03650340.2019.1571268.
  • Gondek, K., Kopeć, M. (2010). Assessment of the effect of sulphur supplied to the soil with mineral fertilizers and waste from magnesium sulphate production on its content in spring wheat (Triticum aestivum L.) and in soil effluents. Polish Journal of Agronomy 2: 18-26.
  • Ivanov, K., Zaprjanova, P., Petkova, M., Stefanova, V., Kmetov, V., Georgieva, D., Angelova, V. (2012). Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils. Spectrochimica Acta Part B: Atomic Spectroscopy 71-72: 117-122. DOI: 10.1016/j.sab.2012.05.013.
  • Jakubowski, M., Kantek, K., Korzeniowska, J. (2013). Wpływ nawozów fosforytowosiarkowych na przenikanie jonów fosforanowych i siarczanowych do wód. Infrastruktura i Ekologia Terenów Wiejskich 3: 75-88.
  • Jankowski, K.J., Kijewski, Ł., Groth, D., Skwierawska, M., Budzyński, W.S. (2015). The effect of sulfur fertilization on macronutrient concentrations in the post-harvest biomass of rapeseed (Brassica napus L. ssp. oleifera Metzg). Journal of Elementology 20(3): 585-597. DOI: 10.5601/jelem.2014.19.4.842.
  • Kaczor, A., Łaszcz-Zakorczmenna, J. (2010). Effect of sulphur and potassium fertilization on yield and content of various forms of nitrogen in spring rape. Ecological Chemistry and Engineering A 17(6): 615-621.
  • Kopcewicz, J. (ed.), Lewak, S. (ed.). (2002). Fizjologia roślin. Warszawa: Wyd. Nauk. PWN.
  • Meena, K.K., Meena, R.S., Kumawat, S.M. (2013). Effect of sulfur and iron fertilization on yield attributes, yield and nutrient uptake of mungbean (Vigna radiata). Indian Journal of Agricultural Sciences 83(4): 472-476.
  • Ostrowska, A., Gawliński, S., Szczubiałka, Z. (1991). Metody analizy i oceny właściwości gleb i roślin. Katalog. Warszawa: Instytut Ochrony Środowiska. Podleśna, A., Podleśny, J., Klikocka H. (2017). Wpływ nawożenia siarką i azotem na azotowo-fosforową gospodarkę kukurydzy. Przemysł Chemiczny 6: 1374-1377. DOI: 10.15199/62.2017.6.32.
  • Rahman, M.M., Soaud, A.A., Darwish, F.A.H., Golam, F. (2011). Growth and nutrient uptake of maize plants as affected by elemental sulfur and nitrogen fertilizer in sandy calcareous soil. African Journal of Biotechnology 10(60):12882-12889. DOI: 10.5897/AJB11.2075.
  • Scherer, H.W. (2009). Sulfur in soils. Journal of Plant Nutrition and Soil Science 172: 326-335. DOI: 10.1002/jpln.200900037.
  • Skjemstad, J.O., Baldock, J.A. (2007). Total and organic carbon. In: Carter, M.R., Gregorich, M.G., editors. Soil sampling and methods of analysis. 2nd ed. Boca Raton (FL): CRC Press.
  • Trawczyński, C., Wierzbicka, A. (2014). Pobranie i wykorzystanie azotu z nawozów mineralnych przez odmiany ziemniaka o różnej wczesności. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 271: 45-54.
  • Vega, F., Alonso-Fariñas, B., Baena-Moreno, F.M., Rodriguez, J.A., Navarette, B. (2018). New trends in coal conversion. Combustion, gasification, emissions, and coking. Woodhead Publishing.
  • Warzyński, H., Sosnowska, A., Harasimiuk, A. (2018). Effect of variable content of organic matter and carbonates on results of determination of granulometric composition by means of Casagrande’s areometric method in modification by Prószyński. Soil Science Annual 69(1): 39-48. DOI: 10.2478/ssa-2018-0005.
  • Zuchi, S., Watanabe, M. Hubberten, H.M., Bromke, M., Osori, S., Fernie, A.R., Celletti, S., Paolacci, A.R., Catarcione, G., Ciaffi, M., Hoefgen, R., Astolfi, S. (2015). The interplay between sulfur and iron nutrition in tomato. Plant Physiology 169(4):2624- 2639. DOI: 10.1104/pp.15.00995.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caeb9ca8-3a11-4eab-a374-dacbabdf088d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.