PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Metody nieniszczące w ocenie rozwoju uszkodzenia materiałów konstrukcyjnych w warunkach obciążeń eksploatacyjnych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Non-destructive methods in assessment of damage development in structural materials operated under service loads
Języki publikacji
PL
Abstrakty
PL
Praca dotyczy wykorzystania metody prądów wirowych oraz innych metod nieniszczących do identyfikacji lokalnych zmian w strukturze materiału związanych z rozwojem uszkodzenia w warunkach obciążenia zmęczeniowego. Dla wybranych, metalicznych materiałów konstrukcyjnych (stale, stopy niklu i aluminium) poddanych cyklicznym obciążeniom zmiennym opracowano ilościowe charakterystyki rozwoju uszkodzenia na podstawie wyznaczonych zmian składowych odkształcenia w kolejnych cyklach obciążenia. Równocześnie z próbami zmęczeniowymi przetestowano szereg diagnostycznych metod nieniszcząych w celu oceny możliwości lokalizacji procesu inicjowania uszkodzenia zmęczeniowego w materiale próbek. Opracowane procedury badawcze z zastosowaniem metody prądów wirowych, wspierane technikami optycznymi (lub innymi technikami NDT), umożliwiły nie tylko identyfikację obszarów uszkodzenia zmęczeniowego we wczesnym etapie rozwoju, związanego ze zmianami strukturalnymi, ale także na monitorowanie procesu degradacji próbek, aż do ich zerwania. Badania przeprowadzono na stopach konstrukcyjnych dobranych nie tylko z uwagi na właściwości elektromagnetyczne, ale przede wszystkim na mechanizmy rozwoju uszkodzenia zmęczeniowego. Badania próbek z żarowytrzymałej stali 1.4903 obejmowały testy zmęczeniowe wraz z wyznaczeniem odkształceniowego współczynnika uszkodzenia zmęczeniowego (φ) opisującego dynamikę zmian składowych odkształcenia w kolejnych cyklach obciążeń zmiennych. Wyniki tych obliczeń skorelowano z wynikami pomiarów parametru sygnału prądowirowego w postaci kąta fazowego krzywej impedancyjnej, realizowanych według opracowanej procedury. Pomiar ten wykonano w zdefiniowanych miejscach na próbce poddanej obciążeniom zmiennym, po ustalonej liczbie cykli zmęczeniowych. Przeprowadzono także badania mikrostrukturalne w zakresie metalografii (zgładów poprzecznych i podłużnych) oraz fraktografii (przełomów) próbek poddanych próbom zmęczeniowym. Badania mikrostrukturalne potwierdziły występowanie zjawisk związanych z degradacją zmęczeniową, które mogą uzasadniać zmiany charakterystyki sygnału prądowirowego w funkcji jej rozwoju. Zjawiska te to przede wszystkim lokalne odkształcenia plastyczne wokół twardych wtrąceń oraz mikropęknięcia. Badania zmęczeniowe dla stali 1.4903 przeprowadzono na próbkach w stanie dostawy oraz na próbkach eksploatowanych w warunkach pracy rurociągów pary świeżej w jednej z krajowych elektrowni. Na podstawie analizy uzyskanych wyników badań i ich obróbki opracowano metodykę oceny rozwoju degradacji wyrażonej ilościowo poprzez narastanie składowych odkształcenia niesprężystego w kolejnych cyklach obciążenia. Na podstawie opracowanych procedur pomiarowych uzyskano wyniki wskazujące zarówno na możliwość lokalizacji i identyfikacji defektów powstałych wskutek procesu zmęczeniowego we wczesnym etapie jego rozwoju, jak i na ilościową ocenę stopnia degradacji na podstawie analizy zmian parametrów wyznaczonych techniką prądów wirowych w kolejnych cyklach obciążeń zmęczeniowych. Kolejne wyniki uzyskano w badaniach stopu niklu MAR 247 stosowanego do budowy łopatek turbin silników lotniczych. Serię próbek z tego stopu poddano próbom zmęczeniowym, którym towarzyszyły badania nieniszczące z wykorzystaniem technik optycznych, takich jak cyfrowa korelacja obrazu (DIC - Digital Image Correlation) czy elektroniczna interferometria plamkowa (ESPI - Electronic Speckle Pattem Interferometry). Na próbkach poddawanych testom zmęczeniowym przeprowadzono także pomiary konduktywności z zastosowaniem metody prądów wirowych (według opracowanej procedury) oraz klasyczne badania defektoskopowe. Metody optyczne pozwoliły na wczesną identyfikację lokalnych koncentracji odkształcenia, wynikających z lokalnych koncentracji naprężenia. Obszary te stanowiły miejsce rozwoju propagacji pęknięcia dominującego, co potwierdziły prowadzone równolegle badania metodą prądów wirowych, które ujawniły także inne pęknięcia zmęczeniowe na etapie poprzedzającym rozwój uszkodzenia dominującego. Ponadto wykazano lokalne zmniejszenie konduktywności w obszarze inicjowania uszkodzenia, związanego z koncentracją odkształcenia. Podobne badania wykonano dla stopu Inconel 718 z zastosowaniem próbek o zmiennej powierzchni przekroju, co umożliwiało uzyskanie zmiennego pola deformacji. Opisano także wyniki badań dotyczących identyfikacji i oceny wad technologicznych oraz eksploatacyjnych związanych m.in z lokalnym przegrzaniem struktury materiału przez narzędzie szlifierskie, niewłaściwie przeprowadzoną obróbkę plastyczną na zimno oraz z oddziaływaniem atmosfery wodorowej. Opracowane procedury badawcze dają możliwość identyfikacji defektów związanych z przypaleniami szlifierskimi, a wykonując analizę parametrów rejestrowanego sygnału impedancji uzyskanego metodą prądów wirowych, można poznać ich właściwości. Dotyczy to ilościowej oceny głębokości strefy przegrzania oraz jakościowej oceny zmian twardości warstwy spowodowanej oddziaływaaniem wysokiej temperatury.
EN
The work concerns the application of eddy current and other non-destructive methods for identification of local changes in the structure of material due to the development of damage under fatigue conditions. For selected, metallic structural engineering materials (steels, nickel and aluminum alloys) subjected to cyclic alternating loads, the quantitative characteristics of damage development were presented and described on the basis of the evolution of deformation components in subsequent load cycles. Along with the fatigue tests, a number of nondestructive diagnostic methods were used to assess the possibility of locating the fatigue failure initiation process in various materials. The proposed research procedures of the eddy current method, supported by optical techniques, allowed not only for early-stage identification of fatigue damage development areas but also to monitor the degradation process of specimens, up to their failure. The eddy current measurements were carried out on alloys selected on the basis of their (magnetic) properties and mechanisms of fatigue damage development. The tests of the heat-resistant steel specimens (1.4903) included fatigue tests with the determination of the deformation fatigue damage factor describing the dynamics of changes in the deformation components in subsequent load cycles. The results of these calculations were correlated with the measurements of the eddy current signal phase angle, carried out according to the developed procedure. This measurement was performed in selected areas on a specimen subjected to variable loads and after a predetermined number of fatigue cycles. Microstructural observations of specimens subjected to fatigue tests were also carried out in the field of metallography (transverse and longitudinal sections) as well as fractography (fractures). Microstructural studies allowed to confirm the occurrence of processes and phenomena related to fatigue degradation, which may justify changes in the values of the eddy current signal parameters (phase angle) as a function of its development. These were mainly local plastic deformations around hard inclusions and microcracks. Fatigue tests for this steel were carried out on specimens in the as-received condition and on the live steam pipelines operated in the power plant. Based on the eddy current analysis, a fatigue life determination methodology was developed. Such methodology considers the development of degradation, expressed quantitatively, through the growth of the deformation components in subsequent cycles. Based on the established measurement procedures, the obtained results indicate the possibility of localization and identification of fatigue damage at an early stage of its development, as well as a quantitative assessment of the degree of degradation based on the eddy current technique. Further investigations were performed on the MAR 247 nickel alloy used in the construction of turbine blades of aircraft engines. A series of specimens were subjected to fatigue tests and simultaneously monitored by non-destructive, optical testing techniques such as Digital Image Correlation (DIC) and Electronic Speckle Pattern Interferometry (ESPI). Subsequent conductivity measurements were performed on such specimens by using the eddy current method (according to the developed procedure), as well as classic defectoscopy tests. Optical techniques enabled an early identification of local strain concentrations resulting from local stress concentrations. In these areas, the development of the dominant crack propagation was observed. Such observations were further confirmed by the parallel eddy current tests, which also revealed other fatigue cracks at the stage preceding the development of the dominant damage. A local drop in the conductivity value in the area of damage initiation was also found in the form of strain concentration. Similar tests were also carried out for the Inconel 718 alloy by using specimens with a variable cross-sectional area enabling to obtain a variable deformation field. Additionally, an attempt to identify technological defects resulting from local overheating of the material structure by the grinding tool was made. The developed test procedures enabled the detection of defects related to grinding burns. The subsequent analysis of the parameters of the recorded impedance signal obtained by the eddy current method, allows the quantitative assessment of the depth of the overheating zone and the qualitative assessment of changes in the hardness of the layer, resulting from the effect of high temperature.
Rocznik
Tom
Strony
1--168
Opis fizyczny
Bibliogr. 193 poz., rys.
Twórcy
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Bibliografia
  • [1] The Boeing Company, Strain Gage Studies, D-4411, 1959.
  • [2] Hatting D.R., The-S/N-fatigue-life gage: a direct means of measuring cumulative fatigue damage, Experimental Mechanics, 6: 19A–24A, 1966.
  • [3] Charsley P., Robins B.A., Electrical resistance changes of cyclically deformed copper-nickel alloys, Materials Science and Engineering, 17(1): 117–123, 1975, doi: 10.1016/0025-5416(75)90035-X.
  • [4] Szökefalvi-Nagy A., Electrical resistivity of cyclically deformed tungsten, Scripta Metallurgica, 11(4): 335–337, 1977, doi: 10.1016/0036-9748(77)90213-7.
  • [5] Joshi N.R., Green R.E., Ultrasonic detection of fatigue damage, Engineering Fracture Mechanics, 4(3): 577–583, 1972, doi: 10.1016/0013-7944(72)90067-7.
  • [6] Carson J., Rose J.L., An ultrasonic nondestructive test procedure for the early detection of fatigue damage and the prediction of remaining life, undefined, 1978.
  • [7] Clough R.B., Chang J.C.,Travis J.P., Acoustic emission signatures and source microstructure using indentation fatigue and stress corrosion cracking in aluminum alloys, Scripta Metallurgica, 15(4): 417–422, 1981, doi: 10.1016/0036-9748(81)90222-2.
  • [8] Tittmann B.R., Cohen-Ténoudji F., De Billy M., Jungman A., Quentin G., A simple approach to estimate the size of small surface cracks with the use of acoustic surface waves, Applied Physics Letters, 33(1): 6–8, 1978, doi: 10.1063/1.90148.
  • [9] Karjalainen L.P., Moilanen M., Detection of plastic deformation during fatigue of mild steel by the measurement of Barkhausen noise, NDT International, 12(2): 51–55, 1979, doi: 10.1016/0308-9126(79)90015-4.
  • [10] Duke J.C., Green R.E., Simultaneous monitoring of acoustic emission and ultrasonic attenuation during fatigue of 7075 aluminium, International Journal of Fatigue, 1(3): 125–132, 1979, doi: 10.1016/0142-1123(79)90002-1.
  • [11] Namkung M., Utrata D., Nondestructive residual stress measurements in railroad wheels using the low-field magnetoacoustic test method, [in:] Thompson D.O., Chimenti D.E. (Eds) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1429–1438, Springer, Boston, MA., 1988, doi: 10.1007/978-1-4613-0979-6_66.
  • [12] Yamasaki T., Ebata K., Fukuoka H., Nondestructive stress measurement using frequency dependence of magnetoacoustic interaction, [in:] Green R.E., Kozaczek K.J., Ruud C.O. (Eds) Nondestructive Characterization of Materials VI, pp. 405–412, Springer, Boston, MA, 1994, doi:10.1007/978-1-4615-2574-5_52.
  • [13] Hauk V., Structural and residual stress analysis by nondestructive methods, Elsevier, 1997, doi: 10.1016/B978-0-444-82476-9.X5000-2.
  • [14] Park Y.K., Waber J.T., Snead C.L., Positron annihilation method for determining dislocation densities in deformed single crystals of iron, Materials Letters, 3(5–6): 181–186, 1985, doi: 10.1016/0167-577X(85)90051-5.
  • [15] Bilgutay N., Onaral B., Nicoletti D., Nondestructive Evaluation of Grain Size Distributions Using Multifractal Analysis of Backscattered Ultrasonic Signals, Report for Defense Technical Information Center, 1992.
  • [16] Speckmann H., Henrich R., Structural Health Monitoring (SHM) – overview on technologies under development enhanced reader, Proceedings of the World Conference on NDT, Montreal 2004.
  • [17] Dziendzikowski M., Niedbala P., Kurnyta A., Kowalczyk K., Dragan K., Structural health monitoring of a composite panel based on PZT sensors and a transfer impedance framework, Sensors, 18(5): 1521, 2018, doi: 10.3390/s18051521.
  • [18] Dong S., Yuan M., Wang Q., Liang Z., A modified empirical wavelet transform for acoustic emission signal decomposition in structural health monitoring, Sensors, 18(5): 1645, 2018, doi: 10.3390/s18051645.
  • [19] Moonens M. et al., On the influence of capillary-based structural health monitoring on fatigue crack initiation and propagation in straight lugs, Materials (Basel), 12(18): 2965, 2019, doi: 10.3390/ma12182965.
  • [20] Bremer K. et al., Fibre optic sensors for the structural health monitoring of building structures, Procedia Technology, 26: 524–529, 2016, doi: 10.1016/j.protcy.2016.08.065.
  • [21] Tareen N., Kim J., Kim W.K., Park S., Fuzzy logic-based and nondestructive concrete strength evaluation using modified carbon nanotubes as a hybrid PZT–CNT sensor, Materials (Basel), 14(11): 2953, 2021, doi: 10.3390/ma14112953.
  • [22] Li Y., Min K., Zhang Y., Wen L., Prediction of the failure point settlement in rockfill dams based on spatial-temporal data and multiple-monitoring-point models, Engineering Structures, 243: 112658, 2021, doi: 10.1016/j.engstruct.2021.112658.
  • [23] Farrar C.R., Lieven N.A.J., Damage prognosis: The future of structural health monitoring, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851): 623–632, 2007, doi: 10.1098/rsta.2006.1927.
  • [24] Courtois X. et al., Full coverage infrared thermography diagnostic for WEST machine protection, Fusion Engineering and Design, 146: 2015–2020, 2019, doi: 10.1016/j.fusengdes.2019.03.090.
  • [25] Raheman F.J., Rojoa D.M., Patel N.G., Performance of infrared thermography and thermal stress test in perforator mapping and flap monitoring: A meta-analysis of diagnostic accuracy, Journal of Plastic, Reconstructive and Aesthetic Surgery, 74(9): 2013–2025, 2021, doi: 10.1016/j.bjps.2021.03.088.
  • [26] Arun Kumar R., Sunil Kumar R., Sreejyothi S., Raj V., Swapna M.S., Sankararaman S., Development of prototype of electronic speckle interferometry based spirometer, Optics and Lasers in Engineering, 136: 106318, 2021, doi: 10.1016/j.optlaseng.2020.106318.
  • [27] Mujeeb A., Nayar V.U., Ravindran V.R., Electronic Speckle Pattern Interferometry techniques for non-destructive evaluation: A review, Insight: Non-Destructive Testing and Condition Monitoring, 48(5): 275–281, 2006, doi: 10.1784/insi.2006.48.5.275.
  • [28] Spagnolo G.S., Ambrosini D., Paoletti D., An NDT electro-optic system for mosaics investigations, Journal of Cultural Heritage, 4(4): 369–376, 2003, doi: 10.1016/j.culher.2003.06.001.
  • [29] Lima R.A.A., Perrone R., Carboni M., Bernasconi A., Experimental analysis of mode I crack propagation in adhesively bonded joints by optical backscatter reflectometry and comparison with digital image correlation, Theoretical and Applied Fracture Mechanics, 116: 103117, 2021, doi: 10.1016/j.tafmec.2021.103117.
  • [30] Hallo G., Lacombe C., Néauport J., Hild F., Detection and tracking of laser damage sites on fused silica components by digital image correlation, Optics and Lasers in Engineering, 146: 106674, 2021, doi: 10.1016/j.optlaseng.2021.106674.
  • [31] Zalameda J.N., Burke E.R., Parker F.R., Seebo J.P., Wright C.W., Bly J.B., Thermography inspection for early detection of composite damage in structures during fatigue loading, [in:] Proceedings of SPIE: Thermosense: Thermal Infrared Applications XXXIV, vol. 8354, p. 835403, 2012, doi: 10.1117/12.918126.
  • [32] Fedala Y., Streza M., Sepulveda F., Roger J.P., Tessier G., Boué C., Infrared lock-in thermography crack localization on metallic surfaces for industrial diagnosis, Journal of Nondestructive Evaluation, 33(3): 335–341, 2014, doi: 10.1007/s10921-013-0218-4.
  • [33] Du W., Liu H., Sirikham A., Addepalli S., Zhao Y., A miniaturised active thermography system for in-situ inspections, IFAC-PapersOnLine, 53(3): 66–71, 2020, doi: 10.1016/j.ifacol.2020.11.011.
  • [34] Yarovoi L.K., Robur L.Y., Gnatovsky A.V., Udalov E.P., Holographic equipment for testing the construction of the nuclear power plant, Proceedings of 4 Regional Meeting Nuclear Energy in Central Europe, 1997.
  • [35] Zimdars D. et al., Technology and applications of terahertz imaging non-destructive examination: Inspection of space shuttle sprayed on foam insulation, AIP Conference Proceedings, 760(1): 570–577, 2005, doi: 10.1063/1.1916726.
  • [36] Kostin V.N., Filatenkov D.Y., Chekasina Y.A., Vasilenko O.N., Serbin E D., Features of excitation and detection of magnetoacoustic emission in ferromagnetic objects, Acoustical Physics, 63(2): 237–244, 2017, doi: 10.1134/S1063771017010055.
  • [37] Peng J., Tian G.Y., Wang L., Zhang Y., Li K., Gao X., Investigation into eddy current pulsed thermography for rolling contact fatigue detection and characterization, NDT&E International, 74: 72–80, 2015, doi: 10.1016/j.ndteint.2015.05.006.
  • [38] Armour A.M., Eddy current and electrical methods of crack detection, Journal of Scientific Instruments, 25(6): 209–210, 1948, doi: 10.1088/0950-7671/25/6/318.
  • [39] Wu J., Zhou D., Wang J., Surface crack detection for carbon fiber reinforced plastic materials using pulsed eddy current based on rectangular differential probe, Journal of Sensors, 2014: Article ID 727269, 2014, doi: 10.1155/2014/727269.
  • [40] Grimberg R., Savin A., Steigmann R., Bruma A., Eddy current examination of carbon fibres in carbon-epoxy composites and Kevlar, International Journal of Materials and Product Technology, 27(3–4): 221–228, 2006, doi: 10.1504/IJMPT.2006.011272.
  • [41] Kukla D., Szwed M., Roskosz M., Ocena grubości warstw chromowych na stali i staliwie z wykorzystaniem metody prądów wirowych, Przegląd Spawalnictwa, 89(11): 9–14, 2017, doi: 10.26628/PS.V89I11.826.
  • [42] Lewińska-Romicka A., Pomiary grubości powłok, Warszawa, Biuro Gamma mgr Bogusław Osuchowski, 2001.
  • [43] Kukla D., Grzywna P., Kopeć M., Kowalewski Z.L., Eddy current method for thickness assessment of carburized layers, AMT 2016, XXI Physical Metallurgy and Materials Science Conference – Advanced Materials and Technologies, 2016-06-05/06-08, Rawa Mazowiecka, pp. BP7-1–3, 2016.
  • [44] Kukla D., Grzywna P., Kopeć M., Kowalewski Z.L., Assessment of hardened layer thickness for 40HNMA steel using eddy current method, Inżynieria Materiałowa, 213(5): 263–266, 2016, doi: 10.15199/28.2016.5.10.
  • [45] Kukla D., Wyszkowski M., Hardness assessment of induction hardened layers based on the analysis of eddy current signal, Inżynieria Powierzchni, 24(4): 3–9, 2020, doi: 10.5604/01.3001.0013.9724.
  • [46] Tube Probs, Olympus IMS, https://www.olympus-ims.com/pl/tube-inspection-probes/ (dostęp 29.03.2022).
  • [47] Kukla D., Zagórski A., Sarniak Ł., Quantitative evaluation of eddy current signals generated by defects in austenitic heat exchanger tubes, Biuletyn Instytutu Spawalnictwa w Gliwicach, 63(4): 59–65, 2019, doi: 10.17729/ebis.2019.4/6.
  • [48] Bakunov A.S., Muzhitskii V.F., Shubochkin C.E., VE-26NP eddy-current structuroscope, Russian Journal of Nondestructive Testing, 39(11): 866–870, 2003, doi: 10.1023/B:RUNT.0000023757.34685.13.
  • [49] Skrbek B., Nosek V., Combined non-destructive structuroscopy of dispersion metallic materials (dostęp 18.10.2021).
  • [50] Dybiec C., Włodarczyk S., Zastosowanie metody prądów wirowych do pomiaru naprężeń normalnych w połączeniach spawanych, Inżynieria Powierzchni, Nr 3: 45–51, 2001.
  • [51] Dybiec C., Włodarczyk S., Dybiec M., Measurement of own stress using the eddy current method, 7th European Conference on Non-destructive Testing, NDT.net, 3(12), 1998, https://www.ndt.net/article/ecndt98/et/404/404.htm.
  • [52] Dybiec C., Janowski S., Włodarczyk S., Włodarczyk W., Walidacja wyników pomiarów naprężeń metodą prądów wirowych, Inżynieria Powierzchni, 3: 19–22, 2003.
  • [53] Piekarski R., Zastosowanie metody prądów wirowych do pomiaru naprężeń własnych wywołanych wybranymi obróbkami powierzchniowymi, Rozprawa doktorska, 2003.
  • [54] Zergoug M., Kamel G., Boucherou N., Mechanical stress analysis by eddy current method, [in:] Proceeginhs of ECNDT 2006, https://www.ndt.net/article/ecndt2006/sessi~68.htm.
  • [55] Mekhlouf S., Zergoug M., Benkedda Y., Residual stress analysis in the titanium by eddy current method, NDT in Progress, 5th International Workshop of NDT Experts, 12-14 Oct 2009, Prague, e-Journal of Nondestructive Testing, 15(4), https://www.ndt.net/?id=8622.
  • [56] Zeng Z. et al., Eddy current testing of residual stress state in aluminum alloy, IEEE Transactions on Instrumentation and Measurement, 70: 6007208, 2021, doi: 10.1109/TIM.2021.3076561.
  • [57] Broom T., Lattice defects and the electrical resistivity of metals, Advances in Physics, 3(9): 26–83, 1954, doi: 10.1080/00018735400101163.
  • [58] Martin J.W., The electrical resistivity due to structural defects, Philosophical Magazine, 24(189): 555–566, 1971, doi: 10.1080/14786437108217029.
  • [59] Basinski Z.S., Saimoto S., Resistivity of deformed crystals, Canadian Journal of Physics, 45(2): 1161–1176, 1967, doi: 10.1139/p67-085.
  • [60] Schwerer F.C., Silcox J., Electrical resistivity due to dislocations in nickel at low temperatures, Philosophical Magazine, 26(5): 1105–1119, 1972, doi: 10.1080/14786437208227367.
  • [61] Rajic N., Tsoi K., Methods of Early Fatigue Detection, Report for Defense Technical Information Center, 1997.
  • [62] Constable J.H., Sahay C., Electrical resistance as an indicator of fatigue, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 15(6): 1138–1145, 1992, doi: 10.1109/33.206940.
  • [63] Tomáš I., Kovářík O., Vértesy G., Kadlecová J., Nondestructive indication of fatigue damage and residual lifetime in ferromagnetic construction materials, Measurement Science and Technology, 25(6): 065601, 2014, doi: 10.1088/0957-0233/25/6/065601.
  • [64] Gilanyi A., Morishita K., Sukegawa T., Uesaka M., Miya K., Magnetic nondestructive evaluation of fatigue damage of ferromagnetic steels for nuclear fusion energy systems, Fusion Engineering and Design, 42(1–4): 485–491, 1998, doi: 10.1016/S0920-3796(98)00180-X.
  • [65] Kim C., Nondestructive evaluation by reversible magnetic permeability of the residual life of ferritic 9Cr steel subjected to creep-fatigue damage, Materials Transactions, 59(2): 316–319, 2018, doi: 10.2320/matertrans.M2017290.
  • [66] Bong C.J., Ryu K.S., Nahm S.H., Kyu Kim E., Nondestructive evaluation for remanent life of modified 9Cr1Mo steel by reversible magnetic permeability, Journal of Magnetism and Magnetic Materials, 323(5): 379–382, 2011, doi: 10.1016/j.jmmm.2010.10.015.
  • [67] Bhat I.K., Muju M.K., Mazumdar P.K., Possible effects of magnetic fields in fatigue, International Journal of Fatigue, 15(3): 193–197, 1993, doi: 10.1016/0142-1123(93)90176-Q.
  • [68] Żurek Z., Baron D., Measurement of changes of magnetic permeability and electrical conductivity values in generator rotor retaining rings, Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej, Nr 66, 2012.
  • [69] Savrai R.A., Makarov A.V., Gorkunov E.S., Kogan L.Kh, Eddy-current testing of the fatigue degradation of a surface-hardened medium-carbon structural steel, 12th European Conference on Non-Destructive Testing (ECNDT 2018), Gothenburg, 2018, June 11–15 (ECNDT 2018), e-Journal of Nondestructive Testing, 23(8), 2018, https://www.ndt.net/search/docs.php3?id=22692.
  • [70] Gorkunov E.S., Savrai R.A., Makarov A.V., Zadvorkin S.M., Kogan L.K, The application of magnetic, electromagnetic-acoustic and eddy-current methods to the assessment of plastic deformation under cyclic loading of annealed medium-carbon steel, 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 Oct 2008 (WCNDT 2008), e-Journal of Nondestructive Testing (eJNDT), 13(11): 25–28, 2008, https://www.ndt.net/search/docs.php3?id=6567.
  • [71] Starke P., Walther F., Eifler D., PHYBAL-A new method for lifetime prediction based on strain, temperature and electrical measurements, International Journal of Fatigue, 28(9): 1028–1036, 2006, doi: 10.1016/j.ijfatigue.2005.07.050.
  • [72] Żurek Z.H., Kukla D., Jasiński T., Wykorzystanie mostka RLC do oceny postępu pełzania wysokotemperaturowego stali P91, Zeszyty Problemowe – Maszyny Elektryczne, 113(1): 215–219, 2017.
  • [73] Żurek Z.H., Witoś M., Mostki i przetworniki pomiarowe LCR w wykrywaniu degradacji zmęczeniowej, Przegląd Elektrotechniczny, 91(10): 126–133, 2015, doi: 10.15199/48.2015.10.26.
  • [74] Żurek Z. H., Kukla D., Kurzydłowski K.J., Wybrane metody wykrywania degradacji zmęczeniowej w stalach ferromagnetycznych, Przegląd Elektrotechniczny, 88(7a): 218–222, 2012.
  • [75] Żurek Z.H., Witoś M., Diagnostics of degradative changes in paramagnetic alloys with the use of low frequency impedance spectroscopy, 7th International Symposium on NDT in Aerospace, 16–18 Nov 2015, Bremen, Germany.
  • [76] Mao H. et al., Fatigue damage detection and location of metal materials by electrical impedance tomography, Results in Physics, 15: 102664, 2019, doi: 10.1016/j.rinp.2019.102664.
  • [77] Chady T., Inspection of clad materials using massive multi-frequency excitation and spectrogram eddy current method, 19th World Conference on Non-Destructive Testing (WCNDT 2016), 13-17 June 2016 in Munich, Germany (WCNDT 2016), e-Journal of Nondestructive Testing (eJNDT), 21(7), 2016, https://www.ndt.net/search/docs.php3?id=19722.
  • [78] Lo C.C.H., Tang F., Biner S.B., Jiles D.C., Effects of fatigue-induced changes in microstructure and stress on domain structure and magnetic properties of Fe–C alloys, Journal of Applied Physics, 87(9): 6520–6522, 2000, doi: 10.1063/1.372757.
  • [79] Liu Y., Lan X., Hu B., Evaluation of fatigue damage in 304 stainless steel by measuring residual magnetic field, [in:] G.Y. Tian, B. Gao (Eds), Electromagnetic Non-Destructive Evaluation (XXIII), IOS Press, pp. 173–178, 2020, doi: 10.3233/SAEM200029.
  • [80] Sakai K., Kiwa T., Tsukada K., Fatigue detection of steel plate using magnetic flux leakage method, 19th World Conference on Non-Destructive Testing, 2016.
  • [81] Shen G., Shen Y., Study on the characteristics of magneto acoustic emission for mild steel fatigue: MAE for steel fatigue, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2182): 20190586, 2020, doi: 10.1098/rsta.2019.0586.
  • [82] Roskosz M., Witoś M., Żurek Z.H., Fryczowski K., Porównanie możliwości diagnostycznych metod magnetycznej pamięci metalu, szumu Barkhausena i niskoczęstotliwościowej impedancji, Przegląd Spawalnictwa, 88(10): 57–62, 2016, doi: 10.26628/wtr.v88i10.687.
  • [83] Sikora R., Chady T., Nondestructive testing by electromagnetic methods, Przegląd Elektrotechniczny, 92(9): 3–9, 2016, doi: 10.15199/48.2016.09.01.
  • [84] Chady T., Schabowicz K., Nieniszczące badania płyt włóknisto-cementowych z wykorzystaniem terahercowej spektroskopii w dziedzinie czasu, Badania Nieniszczące i Diagnostyka, 2016(1–2): 62–66, 2016.
  • [85] Jonuscheit J., Beigang R., Ellrich F., Klier J., Matheis C., Molter D., Theuer M., Terahertz imaging for non-destructive testing, [in:] 2nd International Symposium on NDT in Aerospace, 2010.
  • [86] Tian G.Y., Yin A., Gao B., Zhang J., Shaw B., Eddy current pulsed thermography for fatigue evaluation of gear, AIP Conference Proceedings, 1581(33): 1652–1662, 2014, doi: 10.1063/1.4865022.
  • [87] Hwang S., An Y.K., Kim J.M., Sohn H., Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography, Optics and Lasers in Engineering, 119: 9–17, 2019, doi: 10.1016/j.optlaseng.2019.02.001.
  • [88] Tiitto K., Use of Barkhausen noise in fatigue, [in:] Thompson, D.O., Chimenti, D.E. (eds), Review of Progress in Quantitative Nondestructive Evaluation, Vol. 9, pp. 1845–1853, 1990, doi: 10.1007/978-1-4684-5772-8_237.
  • [89] Soultan M., Kleber X., Chicois J., Vincent A., Mechanical Barkhausen noise during fatigue of iron, NDT&E International, 39(6): 493–498, 2006, doi: 10.1016/J.NDTEINT.2006.03.003.
  • [90] Sagar S.P., Parida N., Das S., Dobmann G., Bhattacharya D.K., Magnetic Barkhausen emission to evaluate fatigue damage in a low carbon structural steel, International Journal of Fatigue, 27(3): 317–322, 2005, doi: 10.1016/j.ijfatigue.2004.06.015.
  • [91] Obata M., Ito Y., Furuya Y., Iijima K., Fukui Y., Nondestructive evaluation of embrittlement of 3Ni-Cr-Mo-V rotor steel by the magnetic Barkhausen noise method, Transactions of the Japan Society of Mechanical Engineers Series A, 56(527): 1677–1684, 1990, doi: 10.1299/kikaia.56.1677.
  • [92] Tomita Y., Hashimoto K.,Osawa N., Nondestructive estimation of fatigue damage for steel by Barkhausen noise analysis, NDT&E International, 29(5 Spec. Iss.): 275–280, 1996, doi: 10.1016/s0963-8695(96)00030-8.
  • [93] Piotrowski L., Augustyniak B., Chmielewski M., Stan rozwoju metody diagnozowania materiałów z wykorzystaniem efektu emisji magnetoakustycznej, Przegląd Spawalnictwa, 84(13): 24–30, 2012.
  • [94] O’Sullivan D., Cotterell M., Cassidy S., Tanner D.A., Mészáros I., Magneto-acoustic emission for the characterisation of ferritic stainless steel microstructural state, Journal of Magnetism and Magnetic Materials, 271(2–3): 381–389, 2004, doi: 10.1016/j.jmmm.2003.10.004.
  • [95] Augustyniak B., Piotrowski L., Chmielewski M., Kowalewski Z., Comparative study with magnetic techniques of P91 and 13HMF steels properties subjected to fatigue tests, Journal of Electrical Engineering, 63: 15–18, 2012.
  • [96] Dubov A.A., A study of metal properties using the method of magnetic memory, Metal Science and Heat Treatment, 39(9): 401–405, 1997, doi: 10.1007/BF02469065.
  • [97] Dybała J., Nadulicz K., Zastosowanie metody magnetycznej pamięci metalu w diagnostyce obiektów technicznych, Problemy Techniki Uzbrojenia, 44(133): 63–80, 2015.
  • [98] Dubov A.A., Diagnosing Boiler Pipes with the Use of Magnetic Memory of Metal, Energoizdat, 1995.
  • [99] Dubov A.A., Diagnosing pipelines and vessels with the use of the method of magnetic memory of metal, Bezopas. Tr. Promysh-sti, 6: 27–31, 1997.
  • [100] Witos M., Zwiększenie żywotności silników turbinowych poprzez aktywne diagnozowanie i sterowanie, Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, tom 29, 2011.
  • [101] Hu B., Chen G., Shen G., Li L., Chen X., Study on Magnetic Memory Method (MMM) for fatigue evaluation, 17th World Conference on Nondestructive Testing, 25–28 Oct 2008, Shanghai, China 2008.
  • [102] Costain J., Pearson N.R,. Boat M.A, Boba R., Możliwości współczesnych skanerów den zbiorników działających w oparciu o metodę strumienia rozproszenia pola magnetycznego, Badania Nieniszczące i Diagnostyka, 2017(1–2): 20–23, 2017, doi: 10.26357/Bnid.2017.020.
  • [103] Porter P., Use of magnetic flux leakage (MFL) for the inspection of pipelines and storage tanks, NDT & E International, 30(1): 33, 1997, doi: 10.1117/12.209361.
  • [104] Kim J.-W, Park S., Magnetic flux leakage–based local damage detection and quantification for steel wire rope non-destructive evaluation, Journal of Intelligent Materials Systems and Structures, 29(17): 3396–3410, 2018, doi: 10.1177/1045389X17721038.
  • [105] Johnston D., Aboveground storage tank floor inspection using magnetic flux leakage, NDT & E International, 26(1): 35–36, 1997, doi: 10.1016/s0963-8695(93) 90169-U.
  • [106] Usarek Z., Warnke K., Inspection of gas pipelines using magnetic flux leakage technology, Advances in Materials Science, 17(3): 37–45, 2017, doi: 10.1515/adms-2017-0014.
  • [107] Wu J. et al., A high-sensitivity MFL method for tiny cracks in bearing rings, IEEE Transactions on Magnetics, 54(6): 6201308, 2018, doi: 10.1109/TMAG.2018.2810199.
  • [108] Schijve J., Fatigue of Structures and Materials, Springer Netherlands, 2009.
  • [109] Przybyłowicz K., Strukturalne aspekty odkształcania metali, WN PWN, Warszawa 2003.
  • [110] Kocańda S., Zmęczeniowe pękanie metali, Wydawnictwa Naukowo-Techniczne, Warszawa 1985.
  • [111] Kukla D., Dietrich L., Ciesielski M., Ocena stopnia uszkodzenia eksploatacyjnego materiału rurociągu parowego na podstawie analizy zmian właściwości zmęczeniowych i mikrostruktury, Acta Mechanica et Automatica, 5(3): 55–60, 2011.
  • [112] Dietrich L., Socha G., Accumulation of damage in A336 GR5 structural steel subject to complex stress loading, Strain, 48(4): 279–285, 2012, doi: 10.1111/j.1475-1305.2011.00821.x.
  • [113] Kukla D., Grzywna P., Zagórski A., Ocena rozwoju degradacji zmęczeniowej stali P91 na podstawie zmian kąta fazowego sygnału prądowirowego, Przegląd Spawalnictwa, 13: 8–11, 2012.
  • [114] Kukla D., Grzywna P., Karczewski R., Ocena rozwoju uszkodzenia zmęczeniowego na podstawie zmian odkształcenia i parametrów prądowirowych w kolejnych cyklach obciążenia, Przegląd Spawalnictwa, 5: 23–31, 2014.
  • [115] Kukla D., Kowalewski Z.L., Grzywna P., Kubiak K., Assessment of fatigue damage development in power engineering steel by local strain analysis, Kovove Materialy – Metallic Materials, 52(5): 269–277, 2014.
  • [116] Krysztofik J., Kukla D., Socha G., Ocena stopnia uszkodzenia stopu Inconel 718 z zastosowaniem prądów wirowych, Przegląd Spawalnictwa, 87(12): 36–38, 2015.
  • [117] Krysztofik J., Kukla D., Manaj W., Socha G., Evaluation of damage degree of inconel 718 alloy with the use of non-destructive methods, Russian Journal of Nondestructive Testing, 55(4): 299–307, 2019, doi: 10.1134/S1061830919040107.
  • [118] Kukla D., Zagórski A., Ocena rozwoju uszkodzenia zmęczeniowego warstwy aluminidkowej na stopie niklu z zastosowaniem technik nieniszczących, Przegląd Spawalnictwa, 87(12): 18–21, 2015.
  • [119] Kukla D., Kopeć M., Wang K., Senderowski C., Kowalewski Z.L., Nondestructive methodology for identification of local discontinuities in aluminide layer-coated Mar 247 during its fatigue performance, Materials, 14(14): 3824-1–13, 2021, doi: 10.3390/ma14143824.
  • [120] Kukla D., Szlagowska-Spychalska J., Grzywna P., Zagórski A., Identyfikacja uszkodzenia zmęczeniowego stopu aluminium 2017 na podstawie pomiarów konduktywności, Przegląd Spawalnictwa, 85(12): 88–91, 2013.
  • [121] Szlagowska-Spychalska J., Dragan K., Kukla D., Spychalski W., Kurzydłowski K.J., A novel approach for the eddy current inspection of the aerospace structures based on the signal modeling and signal processing, The American Society for Nondestructive Testing, Proceedings of the 18th World Conference on Nondestructive Testing, Durban, RPA, 16–20 April, 2012, ASNT, pp. 1–10, 2012.
  • [122] Kukla D., Kopeć M., Sitek R., Olejnik A., Kachel S., Kiszkowiak Ł., A novel method for high temperature fatigue testing of nickel superalloy turbine blades with additional NDT diagnostics, Materials, 14(6): 1392-1–17, 2021, doi: 10.3390/ma14061392.
  • [123] Gupta S., Ray A., Real-time fatigue damage monitoring via in situ ultrasonic sensing, [in:] A.F. Lignelli (Ed.), Fatigue Crack Growth, pp. 3–48, Nova Science Publishers, 2009.
  • [124] Fatemi A., Yang L., Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials, International Journal of Fatigue, 20(1): 9–34, 1998, doi: 10.1016/S0142-1123(97)00081-9.
  • [125] Mourão A. et al., A fatigue damage evaluation using local damage parameters for an offshore structure, Proceedings of the Institution of Civil Engineers: Maritime Engineering, 173(2): 43–57, 2020, doi: 10.1680/jmaen.2019.24.
  • [126] Shang D.G., Sun G.Q., Deng J., Yan C.L., Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach, International Journal of Fatigue, 29(12): 2200–2207, 2007, doi: 10.1016/j.ijfatigue.2006.12.005.
  • [127] Meggiolaro M.A., Castro J.T.P., Statistical evaluation of strain-life fatigue crack initiation predictions, International Journal of Fatigue, 26(5): 463–476, 2004, doi: 10.1016/j.ijfatigue.2003.10.003.
  • [128] Correia J.A.F.O. et al., A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters, Engineering Fracture Mechanics,185: 284–300, 2017, doi: 10.1016/j.engfracmech.2017.06.009.
  • [129] Yuan R., Li H., Huang H.Z.,. Zhu S.P, Gao H., A nonlinear fatigue damage accumulation model considering strength degradation and its applications to fatigue reliability analysis, International Journal of Damage Mechanics, 24(5): 646–662, 2015, doi: 10.1177/1056789514544228.
  • [130] Ramsamooj D.V., Analytical prediction of short to long fatigue crack growth rate using small- and large-scale yielding fracture mechanics, International Journal of Fatigue, 25(9–11): 923–933, 2003, doi: 10.1016/S0142-1123(03)00126-9.
  • [131] Chapetti M.D., Fatigue propagation threshold of short cracks under constant amplitude loading, International Journal of Fatigue, 25(12): 1319–1326, 2003, doi: 10.1016/S0142-1123(03)00065-3.
  • [132] Bjerken C., A tool to model short crack fatigue growth using a discrete dislocation formulation, International Journal of Fatigue, 25(6): 559–566, 2003.
  • [133] Ishihara S., McEvily A.J., Analysis of short fatigue crack growth in cast aluminum alloys, International Journal of Fatigue, 24(11): 1169–1174, 2002, doi: 10.1016/S0142-1123(02)00027-0.
  • [134] Johannesson P., Svensson T., De Maré J., Fatigue life prediction based on variable amplitude tests – Methodology, International Journal of Fatigue, 27(8): 954–965, 2005, doi: 10.1016/j.ijfatigue.2004.11.009.
  • [135] Mlikota M., Schmauder S., Božić Z., Calculation of the Wöhler (S-N) curve using a two-scale model, International Journal of Fatigue, 114: 289–297, 2018, doi: 10.1016/j.ijfatigue.2018.03.018.
  • [136] Grobstein T.L., Sivashankaran S., Welsch G., Panigrahi N., McGervey J.D., Blue J.W., Fatigue damage accumulation in nickel prior to crack initiation, Materials Science and Engineering A, 138(2): 191–203, 1991, doi: 10.1016/0921-5093(91)90688.
  • [137] Myrtja E., Soudier J., Prat E., Chaouche M., Fatigue deterioration mechanisms of high-strength grout in compression, Construction and Building Materials, 270: 121387, 2021, doi: 10.1016/j.conbuildmat.2020.121387.
  • [138] Fiedler M., Vormwald M., Considering fatigue load sequence effects by applying the local strain approach and a fracture mechanics based damage parameter, Theoretical and Applied Fracture Mechanics, 83: 31–41, 2016, doi: 10.1016/j.tafmec.2016.01.003.
  • [139] Góral G., Bydoń S., Uhl T., Intelligent transducers of in-operational loads in construction fatigue monitoring, Machine Dynamics Problems, 26(2/3): 73–88, 2002.
  • [140] Robertson A.N., Farrar C.R., Sohn H., Singularity detection for structural health monitoring using holder exponents, Mechanical Systems and Signal Processing, 17(6): 1163–1184, 2003, doi: 10.1006/mssp.2002.1569.
  • [141] Socha G., Prediction of the fatigue life on the basis of damage progress rate curves, International Journal of Fatigue, 26(4): 339–347, 2004, doi: 10.1016/j.ijfatigue.2003.08.019.
  • [142] Socha G., Experimental investigations of fatigue cracks nucleation, growth and coalescence in structural steel, International Journal of Fatigue, 25(2): 139–147, 2003, doi: 10.1016/S0142-1123(02)00068-3.
  • [143] Socha G., Dietrich L., A fatigue damage indicator parameter for P91 chromium-molybdenum alloy steel and fatigue pre-damaged P54T carbon steel, Fatigue & Fracture of Engineering Materials & Structures, 37(2): 195–205, 2014, doi: 10.1111/ffe.12104.
  • [144] Dietrich L., Radziejewska J., The fatigue damage development in a cast Al-Si-Cu alloy, Materials and Design, 32(1): 322–329, 2011, doi: 10.1016/j.matdes.2010.05.045,.
  • [145] Kowalewski Z.L., Mackiewicz S., Szelążek J., Evaluation of damage in steels subjected to exploitation loading – destructive and non-destructive methods, International Journal of Modern Physics, 22: 5533–5538, 2008 doi: 10.1142/S0217979208050772.
  • [146] Socha G., Dietrich L., Deformation based fatigue damage accumulation model, Solid State Phenomena, 240: 128–133, 2016, doi: 10.4028/www.scientific.net/SSP.240.128.
  • [147] Suresh S., Fatigue of Materials, Cambridge University Press, 1998.
  • [148] Pandkar A.S., Arakere N., Subhash G., Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to rolling contact fatigue, International Journal of Fatigue, 63: 191–202, 2014, doi: 10.1016/j.ijfatigue.2014.01.029.
  • [149] Bayraktar E., Garcias I.M., Bathias C., Failure mechanisms of automotive metallic alloys in very high cycle fatigue range, International Journal of Fatigue, 28(11): 1590–1602, 2006, doi: 10.1016/j.ijfatigue.2005.09.019.
  • [150] Bree J., Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements, The Journal of Strain Analysis for Engineering Design, 2(3): 226–238, 1967, doi: 10.1243/03093247v023226.
  • [151] Rajpurohit R.S., Srinivas N.C.S., Singh V., Ratcheting strain accumulation due to asymmetric cyclic loading of Zircaloy-2 at room temperature, Procedia Structural Integrity, 2: 2757–2763, 2016, doi: 10.1016/j.prostr.2016.06.344.
  • [152] Yan Z. et al., Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect, Materials Science and Engineering A, 723: 212–220, 2018, doi: 10.1016/j.msea.2018.03.023.
  • [153] Maletta C., Sgambitterra E., Furgiuele F., Casati R., Tuissi A., Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue, 66: 78–85, 2014, doi: 10.1016/j.ijfatigue.2014.03.011.
  • [154] Ng H.W., Nadarajah C., Biaxial ratcheting and cyclic plasticity for bree-type loading – Part I: Finite element analysis, The Journal of Pressure Vessel Technology, 118(2): 154–160, 1996, doi: 10.1115/1.2842174.
  • [155] Rutecka A., Dietrich L., Kowalewski Z.L., Evaluation of the heat treatment role for light aluminum alloys subjected to creep and low cycle fatigue, Materials Science Forum, 638–642: 455–460, 2010, doi: 10.4028/www.scientific.net/MSF.638-642.455.
  • [156] Morrison D.J., Jia Y., Moosbrugger J.C., Cyclic plasticity of nickel at low plastic strain amplitude: Hysteresis loop shape analysis, Materials Science and Engineering A, 314(1–2): 24–30, 2001, doi: 10.1016/S0921-5093(00)01914-6.
  • [157] Mayama T., Sasaki K., Kuroda M., Quantitative evaluations for strain amplitude dependent organization of dislocation structures due to cyclic plasticity in austenitic stainless steel 316L, Acta Materialia, 56(12): 2735–2743, 2008, doi: 10.1016/j.actamat.2008.02.005.
  • [158] Zhou D., Moosbrugger J.C., Jia Y., Morrison D.J., A substructure mixtures model for the cyclic plasticity of single slip oriented nickel single crystal at low plastic strain amplitudes, International Journal of Plasticity, 21(12): 2344–2368, 2005, doi: 10.1016/j.ijplas.2004.12.003.
  • [159] Kang G., Kan Q., Cyclic Plasticity of Engineering Materials, John Wiley & Sons, Ltd, 2017.
  • [160] Miner M.A., Cumulative damage in fatigue, Journal of Applied Mechanics, 12(3): A159–A164, 1945, doi: 10.1115/1.4009458.
  • [161] Dobrzański J., Hernas A., Moskal G., Microstructural degradation in boiler steels: Materials developments, properties and assessment, [in:] Power Plant Life Management and Performance Improvement, Woodhead Publishing Series in Energy, pp. 222–271, Woodhead Publishing Ltd, 2011, doi: 10.1533/9780857093806.2.222.
  • [162] Dobrzański J., Materiałoznawcza interpretacja trwałości stali dla energetyki, OPEN Access Library, 2011 (dostęp 13.12.2021).
  • [163] Dobrzański J., Diagnostyka uszkodzeń elementów ciśnieniowych urządzeń, Prace Instytutu Metalurgii Żelaza, T. 61, nr 2, s. 36–45, 2009.
  • [164] Socha G., Nowa metoda pomiaru zniszczenia zmęczeniowego materiałów konstrukcyjnych, Dozór Techniczny, z. 6: 121–124, 2002.
  • [165] Kukla D., Zagórski A., Grzywna P., Ocena rozwoju procesów zmęczeniowych związanych z lokalnymi odkształceniami na przykładzie stali P91 dla energetyki, Energetyka, Problemy Energetyki i Gospodarki Paliwowo-Energetycznej, 65(8/698): 436–440, 2012.
  • [166] Grzywna P., Kukla D., Wpływ eksploatacji na wybrane właściwości mechaniczne stali X10CrMoVnB9-1 (P91), Przegląd Spawalnictwa, 85(12): 75–77, 2013. doi: 10.26628/wtr.v85i12.150.
  • [167] Kukla D., Kopeć M., Kowalewski Z.L., Effect of high temperature exposure on the fatigue damage development of X10CrMoVNb9-1 steel for power plant pipes, BSSM, 15th International Conference on Advances in Experimental Mechanics, 2021-09-07/09-09, Swansea (GB), pp. 1–2, 2021, doi: 10.1016/j.ijpvp.2020.104282.
  • [168] Xu P., Shida K., Eddy current testing probe composed of double uneven step distributing planar coils for crack detection, IEEJ Transactions on Sensors and Micromachines, 128(1): 18–23, 2008, doi: 10.1541/ieejsmas.128.18.
  • [169] Nagy P.B, Electromagnetic NDE, University of Cincinnati, Ohio 45221, USA and UK Research Centre in NDE Imperial College London, SW7 2AZ, UK, March 2011.
  • [170] Żurek Z.H., Dobman G., Rockstroh B.; Kukla D., Examination of service life of power system components made of P91 steel (X10CrMoVNb9-1) using impedance magnetic resonance technique, 19th World Conference on Non-Destructive Testing (WCNDT 2016), 13–17 June 2016, Munich, Germany, e-Journal of Nondestructive Testing (eJNDT), 21(7), 2016, https://www.ndt.net/search/docs.php3?id=19345.
  • [171] Żurek Z.H., Baron D., LCR measuring bridges and LDC1000-series modules in diagnostics of electromagnetic steel condition using low magnetic fields, Przegląd Elektrotechniczny, 91(10): 121–125, 2015, doi: 10.15199/48.2015.10.25.
  • [172] Żurek Z.H., Kukla D., LDC1000 converter for NDT material diagnostics and characterisation, Insight – Non-Destructive Testing and Condition Monitoring, 60(7): 375–379, 2018, doi: 10.1784/insi.2018.60.7.375.
  • [173] Cieśla M., Trwałość nadstopu niklu ŻS6U z aluminidkową warstwą ochronną w warunkach obciążeń cieplnych i mechanicznych, Wydawnictwo Politechniki Śląskiej, Gliwice 2009.
  • [174] Gab Kim S., Ha Hwang Y., Gu Kim T., Min Shu C., Failure analysis of J85 Engine turbine blades, Engineering Failure Analysis, 15(4): 394–400, 2008, doi: 10.1016/j.engfailanal.2007.01.015.
  • [175] Tang H., Cao D., Yao H., Xie M., Duan R., Fretting fatigue failure of an aero engine turbine blade, Engineering Failure Analysis, 16(6): 2004–2008, 2009, doi: 10.1016/j.engfailanal.2008.07.010.
  • [176] Kukla D., Bałkowiec A., Grzywna P., Evaluation of microstructural changes of S235 steel after rolling on the basis of microscopic observations and eddy current non-destructive method, Advances in Materials Science, 42(4): 40–49, 2014, doi: 10.2478/adms-2014-0020,
  • [177] Miksic A., Koivisto J., Rosti J., Alava M., Strain fluctuations from DIC technique applied on paper under fatigue or creep, Procedia Engineering, 10: 2678–2683, 2011, doi: 10.1016/J.PROENG.2011.04.446.
  • [178] Song H., Liu C., Zhang H., Leen S.B., A DIC-based study on fatigue damage evolution in pre-corroded aluminum alloy 2024-T4, Materials (Basel), 11(11): 2243, 2018, doi: 10.3390/MA11112243.
  • [179] Chen C., Ye D., Zhang L., Liu J., DIC-based studies of the overloading effects on the fatigue crack propagation behavior of Ti-6Al-4V ELI alloy, International Journal of Fatigue, 112: 153–164, 2018, doi: 10.1016/J.IJFATIGUE.2018.03.017.
  • [180] Gonzáles G.L.G., González J.A.O., Castro J.T.P., Freire J.L.F., DIC analysis for crack closure investigations during fatigue crack growth following overloads, [in:] Sutton M., Reu P. (Eds), International Digital Imaging Correlation Society. Conference Proceedings of the Society for Experimental Mechanics Series, Springer, Cham, pp. 151–156, 2017, doi: 10.1007/978-3-319-51439-0_36.
  • [181] Eremin A., Panin S., Sunder R., Berto F., DIC Study of fatigue crack growth after single overloads and underloads, Procedia Structural Integrity, 5: 889–895, 2017, doi: 10.1016/J.PROSTR.2017.07.120.
  • [182] Kim K.-S., Kim K.-S., Kwon J.-M., Park S.-M., Kim B.-I., Effect of local strain on low cycle fatigue using ESPI system, Journal of the Society of Naval Architects of Korea, 43(2): 213–219, 2006, doi: 10.3744/SNAK.2006.43.2.213.
  • [183] Zanarini A., Full field ESPI vibration measurements to predict fatigue behavior, [in:] Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerospace Technology, Boston, Massachusetts, pp. 165–174, 2009, doi: 10.1115/IMECE2008-68727.
  • [184] Farahani B.V., Direito F., Sousa P.J., Tavares P.J., Infante V., Moreira P.P.M.G., Crack tip monitoring by multiscale optical experimental techniques, International Journal of Fatigue, 155: 106610, 2022, doi: 10.1016/J.IJFATIGUE.2021.106610.
  • [185] Kukla D., Brynk T., Pakieła Z., Assessment of fatigue resistance of aluminide layers on MAR 247 nickel super alloy with full-field optical strain measurements, Journal of Materials Engineering and Performance, 26(8): 3621–3632, 2017, doi: 10.1007/s11665-017-2767-7.
  • [186] Kukla D., Evaluation of fatigue properties of nickel based superalloy MAR 247 with aluminide coating and crack detection by non‐destructive techniques, 6th International Conference on Mechanics and Materials in Design, 2015-07-26/07-30, Ponta Delgada (PT), pp. 5661-1–8, 2015.
  • [187] Grzywna P., Kukla D., Evaluation of strain distribution for the P91 steel under static load using ESPI system, Advances in Materials Science, 42(4): 28–39, 2014, doi: 10.2478/adms-2014-0019.
  • [188] Kopeć M., Grzywna P., Kukla D., Kowalewski Z.L., Evaluation of the fatigue damage development using ESPI method, Inżynieria Materiałowa, 2016(4): 201–205, 2016, doi: 10.15199/28.2016.4.9.
  • [189] Kopec M., Brodecki A., Kukla D., Kowalewski Z.L., Suitability of DIC and ESPI optical methods for monitoring fatigue damage development in X10CrMoVNb9-1 power engineering steel, Archives of Civil and Mechanical Engineering, 21(4): 167, 2021, doi: 10.1007/s43452-021-00316-1.
  • [190] Kukla D., Kolek Ł., Gradzik A., Evaluation and classification of grinding burns by eddy current method, DMIUT 2019, Diagnostyka materiałów i urządzeń technicznych, 2019-05-29/05-31, Gdańsk (PL), 2019.
  • [191] ASM Metals Handbook. Volume 17. Nondestructive Evaluation and Quality Control.
  • [192] Paradowski K., Manaj W., Spychalski L., Zagórski K., Lubińska D., Kukla D., Płowiec J., Kurzydłowski K.J., Research on possibilities of application of nondestructive testing in degradation evaluation of materials used in infrastructure working under the influence of agressive hydrogen environment, Advances in Materials Science, 7(2/12), 276–283, 2007.
  • [193] Kowalewski Z.L., Ustrzycka A., Szymczak T., Makowska K., Kukla D., Damage identification supported by nondestructive testing techniques, [in:] Altenbach H., Brünig M., Kowalewski Z. (Eds), Plasticity, Damage and Fracture in Advanced Materials, Advanced Structured Materials, vol. 121, pp. 67–117, Springer, Cham, 2020, doi: 10.1007/978-3-030-34851-9_6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cae384e4-8105-4c6d-942e-d41b45e743e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.