PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of statistical versus stochastic models for Work Index determination in quartz-marble mixtures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The required work for ore trituration is represented by the Bond Work Index value and is determined by the grindability test for ball mills. This article examines the grinding behavior of ore blends with different mechanical properties in standard ball mills. The goal of this research was to compare statistic and stochastic models of the Work Index value for mixtures of quartz and marble at different proportions of each material. Quartz and marble bearing rocks were selected for this study due to the high difference between the Work Index value of each material, making the variability of the results more evident. Work Index values obtained for each mixture are shown, from which a deterministic model was proposed defined by data regression. The novelty of this research lies in the non-linear model, which was the best fit for the Work Index value of the quartz-marble blends. Our methodology allows us to build more accurate models and can be used for quartz-marble blends and other materials.
Czasopismo
Rocznik
Tom
Strony
127--140
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Mining Engineering Department, Universidad de Santiago de Chile
autor
  • Mining Engineering Department, Universidad de Santiago de Chile
  • Mining Engineering Department, Universidad de Santiago de Chile
  • Mining Engineering Department, Universidad de Santiago de Chile
autor
  • Mining Engineering Department, Universidad de Santiago de Chile
  • Mining Engineering Department, Universidad de Santiago de Chile
  • Mining Engineering Department, Universidad de Santiago de Chile
  • Mining Engineering Department, Universidad de Santiago de Chile
Bibliografia
  • ANNICCHIARICO W., 2018, Desarrollo de un modelo numérico basado en computación evolutiva para evaluar la eficiencia del proceso de trituración de minerales, Revista de la Facultad de Ingeniería UCV, Vol. 31, No. 2, 127–141.
  • ARAS A., ÖZŞEN H., DURSUN A., 2019, Using artificial neural networks for the prediction of bond work index from rock mechanics properties, Mineral Processing and Extractive Metallurgy Review, Vol. 41, No. 3, 145–152.
  • BOND F., 1961, Crushing and grinding calculations, British Chemical Engineering, Vol. 6, 378–385.
  • CHAKRABARTI D., 2000, Simple approach to estimation of the work index, Mineral Processing and Extractive Metallurgy, Vol. 109, No. 2, 83–89.
  • FARZANEGAN A., MIRZAEI Z., 2015, Scenario-Based Multi-Objective genetic algorithm optimization of closed Ball-Milling circuit of Esfordi Phosphate Plant, Mineral Processing and Extractive Metallurgy Review, Vol. 36, No. 2, 71–82.
  • GHAREHGHESHLAGH H., 2016, Kinetic grinding test approach to estimate the ball mill work index, Physicochemical Problems of Mineral Processing, Vol. 52, No. 1, 342–352.
  • HADIZADEH M., FARZANEGAN A., NOAPARAST M., 2017, Supervisory fuzzy expert controller for SAG mill grinding circuits: Sungun copper concentrator, Mineral Processing and Extractive Metallurgy Review, Vol. 38, No. 3, 168–179.
  • HEISKARI H., KURKI P., LUUKKANEN S., GONZALEZ M., LEHTO H., LIIPO J., 2019, Development of a comminution test method for small ore samples, Minerals Engineering, Vol. 130, 5–11.
  • HOSTEN C., AVSAR C., 1998, Grindability of mixtures of cement clinker and trass, Cement and Concrete Research, Vol. 28, No. 11, 1519–1524.
  • KROESE D., BRERETON T., TAIMRE T., BOTEV Z., 2014, Why the Monte Carlo method is so important today, Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 6, No. 6, 386–392.
  • LUCAY F., GÁLVEZ E., SALEZ-CRUZ M., CISTERNAS L., 2019, Improving milling operation using uncertainty and global sensitivity analyses, Minerals Engineering, Vol. 131, 249–261.
  • LUND C., LAMBERG P., LINDBERG T., 2015, Development of a geometallurgical framework to quantify mineral textures for process prediction, Minerals Engineering, Vol. 82, 61–77.
  • MAGDALINOVIC N., TRUMIC M., TRUMIC G., MAGDALINOVIC S., TRUMIC M., 2012, Determination of the Bond work index on samples of non-standard size, International Journal of Mineral Processing, Vol. 114–117, 48–50.
  • MUCSI G., 2008, Fast test method for the determination of the grindability of fine materials, Chemical Engineering Research and Design, Vol. 86, No. 4, 395–400.
  • MUCSI G., 2013, Grindability of quartz in stirred media mill, Particulate Science and Technology, Vol. 31, No. 4, 399–406.
  • ÖNER M., 2000, A study of intergrinding and separate grinding of blast furnace slag cement, Cement and Concrete Research, Vol. 30, No. 3, 473–480.
  • PEDROSA F., BERGERMAN M., SEGURA-SALAZAR J., DELBONI Jr. H., 2019, HPGR como alternativa a la ruta de conminución de alúmina fundida: una evaluación del potencial de simplificación del circuito, REM – International Engineering Journal, Vol. 72, No. 3, 543–551.
  • SHAD H., SERESHKI F., ATAEI M., KARAMOOZIAN M., 2018, Effect of magnetite content on Bond work index and preconditioning: Case study on Chadormalu iron ore mine, Journal of Central South University, Vol. 25, No. 4, 795–804.
  • SINGH V., DIXIT P., VENUGOPAL R., VENKATESH K., 2019, Ore pretreatment methods for grinding: Journey and prospects, Mineral Processing and Extractive Metallurgy Review, Vol. 40, No. 1, 1–15.
  • TAVARES L., KALLEMBACK R., 2013, Grindability of binary ore blends in ball mills, Minerals Engineering, Vol. 41, 115–120.
  • YAN D., EATON R., 1994, Breakage properties of ore blends, Minerals Engineering, Vol. 7, No. 2–3, 185–199.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cae0a04d-7c3a-45f1-88e1-a147c9eae6dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.