PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Waste management faces more and more serious challenges, especially given the growing amount of municipal waste generated in Poland and the resulting environmental impact. One of the significant environmental aspects of waste management is the emission of odorants and odors. Taking into account the odor problem, the majority of municipal waste generated is being collected as mixed waste (62% of municipal waste), which by weight contains approximately 32.7% of kitchen and garden waste. These organic fractions are mainly responsible for the emission of odor and odorants. Those substances can be emitted at every stage: from the waste collection at residential waste bins, through transport, waste storage, and transfer stations, up to various respective treatment facilities, i.e., mechanical-biological waste treatment plants, landfills, or waste incineration plants. The gathered data during the study showed that it is necessary to increase the share of different waste management methods, i.e., recycling, composting, or fermentation processes rather than landfilling to meet all necessary regulations and to fulfill provisions of the waste hierarchy. One of the actions indicated in the legal solutions is expansion, retrofitting, and construction of new sorting plants, anaerobic digestion plants, composting plants, and increase in thermal treatment capacity. Variety of different processes that could emit odors and a diversity of different odor-generating substances released from particular waste management steps should be taken into consideration when building new facilities which are suitable for waste treatment. The overall aim of the work was to characterize and summarize available knowledge about waste management system in Poland and to gather information about odor-generating substances emitted from different waste management steps and facilities, which could be a potential source of information for preparing legal solutions to reduce possible odor nuisance form broadly understood waste management.
Rocznik
Strony
3--20
Opis fizyczny
Bibliogr. 98 poz., rys., tab., wykr.
Twórcy
  •  Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  •  Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
  •  Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  •  Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
Bibliografia
  • 1. Aatamila, M., Verkasalo, P.K., Korhonen, M.J., Viluksela, M.K., Pasanen, K., Tiittanen, P. & Nevalainen, A. (2010). Odor annoyance near waste treatment centers: A population-based study in Finland. J. Air Waste Manag. Assoc., 60, pp. 412–418, DOI: 10.3155/1047-3289.60.4.412
  • 2. Almarcha, D., Almarcha, M., Nadal, S. & Caixach, J. (2012). Comparison of the depuration efficiency for voc and other odoriferous compounds in conventional and advanced biofilters in the abatement of odour emissions from municipal waste treatment plants. Chem. Eng. Trans., 30, pp. 259–264, DOI: 10.3303/CET1230044
  • 3. Alwaeli, M. (2015). An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng., 41, pp. 181–193, DOI: 10.5277/epel50414
  • 4. Bax, C., Sironi, S. & Capelli, L. (2020). How can odors be measured? An overview of methods and their applications. Atmosphere (Basel)., 11, DOI: 10.3390/atmos11010092
  • 5. Beylot, A., Hochar, A., Michel, P., Descat, M., Ménard, Y. & Villeneuve, J. (2018). Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency. J. Ind. Ecol., 22, pp. 1016–1026, DOI: 10.1111/jiec.12701
  • 6. den Boer, E. Banaszkiewicz, K. & Sebastian M. (2018). Badania ilości i składu odpadów komunalnych w cyklu rocznym pochodzących z terenu gminy Wrocław. Raporty Wydziału Inżynierii Środowiska Politechniki Wrocławskiej. Ser. SPR nr 30, 226. (in Polish)
  • 7. den Boer, E., Jedrczak, A., Kowalski, Z., Kulczycka, J. & Szpadt, R. (2010). A review of municipal solid waste composition and quantities in Poland. Waste Manag., 30, pp. 369–377, DOI: 10.1016/j.wasman.2009.09.018
  • 8. Brattoli, M., de Gennaro, G., de Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: Olfactometry and chemical sensors. Sensors, 11, pp. 5290–5322, DOI: 10.3390/s110505290
  • 9. Bruno, P., Caselli, M., de Gennaro, G., Solito, M. & Tutino, M. (2007). Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manag., 27, pp. 539–544, DOI: 10.1016/j.wasman.2006.03.006
  • 10. Burnley, S.J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste Manag., 27, pp. 1274–1285, DOI: 10.1016/j.wasman.2006.06.018
  • 11. Butrymowicz T. (2018). Badania odpadów w Jarocinie. Centralne Laboratorium Instytutu Inżynierii Środowiska, Uniwersytet Zielonogórski., unpublished. (in Polish)
  • 12. Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M. & Stellacci, P. (2008). Health risk assessment of air emissions from a municipal solid waste incineration plant – A case study. Waste Manag., 28, pp. 885–895, DOI: 10.1016/j.wasman.2007.05.006
  • 13. Capelli, L. & Sironi, S. (2018). Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmos. Environ., 191, pp. 273–290, DOI: 10.1016/j.atmosenv.2018.08.007
  • 14. Capelli, L., Sironi, S. & del Rosso, R. (2013a). Odor sampling: Techniques and strategies for the estimation of odor emission rates from different source types. Sensors, 13, pp. 938–955, DOI: 10.3390/s130100938
  • 15. Capelli, L., Sironi, S., Del Rosso, R. & Guillot, J.M. (2013b). Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ., 79, pp. 731–743, DOI: 10.1016/j.atmosenv.2013.07.029
  • 16. Chang, H., Tan, H., Zhao, Y., Wang, Y., Wang, X., Li, Y., Lu, W. & Wang, H. (2019). Statistical correlations on the emissions of volatile odorous compounds from the transfer stage of municipal solid waste. Waste Manag., 87, pp. 701–708, DOI: 10.1016/j.wasman.2019.03.014
  • 17. Chen, Y.C. (2018). Effects of urbanization on municipal solid waste composition. Waste Manag., 79, pp. 828–836, DOI: 10.1016/j.wasman.2018.04.017
  • 18. Cheng, Z., Zhu, S., Chen, X., Wang, L., Lou, Z. & Feng, L. (2020). Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater., 384, 120912, DOI: 10.1016/j.jhazmat.2019.120912
  • 19. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ., 649, pp. 1038–1044, DOI: 10.1016/j.scitotenv.2018.08.230
  • 20. Colón, J., Alvarez, C., Vinot, M., Lafuente, F.J., Ponsá, S., Sánchez, A. & Gabriel, D. (2017). Characterization of odorous compounds and odor load in indoor air of modern complex MBT facilities. Chem. Eng. J., 313, pp. 1311–1319, DOI: 10.1016/j.cej.2016.11.026
  • 21. Conti, C., Guarino, M. & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environ. Int., 134, 105261, DOI: 10.1016/j.envint.2019.105261
  • 22. Curren, J., Hallis, S.A., Snyder, C. (Cher) L. & Suffet, I. (Mel) H. (2016). Identification and quantification of nuisance odors at a trash transfer station. Waste Manag., 58, pp. 52–61, DOI: 10.1016/j.wasman.2016.09.021
  • 23. Çetin Doğruparmak, Ş., Pekey, H. & Arslanbaş, D. (2018). Odor dispersion modeling with CALPUFF: Case study of a waste and residue treatment incineration and utilization plant in Kocaeli, Turkey. Environ. Forensics, 19, pp. 79–86, DOI: 10.1080/15275922.2017.1408160
  • 24. Damgaard, A., Riber, C., Fruergaard, T., Hulgaard, T. & Christensen, T.H. (2010) Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag., 30, pp. 1244–1250, DOI: 10.1016/j.wasman.2010.03.025
  • 25. Defoer, N., De Bo, I., Van Langenhove, H., Dewulf, J. & Van Elst, T. (2002) Gas chromatography-mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J. Chromatogr. A, 970, pp. 259–273, DOI: 10.1016/S0021-9673(02)00654-4
  • 26. Di Foggia, G., Beccarello, M. (2021) Market structure of urban waste treatment and disposal: Empirical evidence from the italian industry. Sustain., 13, DOI: 10.3390/su13137412
  • 27. Di, Y., Liu, J., Liu, J., Liu, S. & Yan, L. (2013). Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. J. Air Waste Manag. Assoc., 63, pp. 1173–1181, DOI: 10.1080/10962247.2013.807318
  • 28. Directive 2008/98/EC of The European Parliment and of The Council of 19 November 2008 on waste and repealing certain Directives.
  • 29. Duan, Z., Scheutz, C. & Kjeldsen, P. (2021). Trace gas emissions from municipal solid waste landfills: A review. Waste Manag., 119, pp. 39–62, DOI: 10.1016/j.wasman.2020.09.015
  • 30. European Comission Eurostat Available online: https://ec.europa.eu/ eurostat/web/main/data/database.
  • 31. European Union Council Directive 1999/31/EC on the landfill, 1999.
  • 32. European Union Directive 2018/851 amending Directive 2008/98/EC on waste.
  • 33. Fang, J.J., Yang, N., Cen, D.Y., Shao, L.M. & He, P.J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag., 32, pp. 1401–1410, DOI: 10.1016/j.wasman.2012.02.013
  • 34. Fang, J., Zhang, H., Yang, N., Shao, L. & He, P. (2013). Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: Odor assessment and photochemical reactivity. J. Air Waste Manag. Assoc., 63, pp. 1287–1297, DOI: 10.1080/10962247.2013.822439
  • 35. Fei, F., Wen, Z., Huang, S. & De Clercq, D. (2018). Mechanical biological treatment of municipal solid waste: Energy efficiency, environmental impact and economic feasibility analysis. J. Clean. Prod., 178, pp. 731–739, DOI: 10.1016/j.jclepro.2018.01.060
  • 36. Forastiere, F., Badaloni, C., De Hoogh, K., Von Kraus, M.K., Martuzzi, M., Mitis, F., Palkovicova, L., Porta, D., Preiss, P. & Ranzi, A. (2011). Health impact assessment of waste management facilities in three European countries. Environ. Heal. A Glob. Access Sci. Source, 10, pp. 1–13, DOI: 10.1186/1476-069X-10-53
  • 37. Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste Manag., 29, pp. 2227–2239, DOI: 10.1016/j.wasman.2009.03.028
  • 38. Guo, H., Duan, Z., Zhao, Y., Liu, Y., Mustafa, M.F., Lu, W. & Wang, H. (2017). Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ. Sci. Pollut. Res., 24, pp. 18383–18391, DOI: 10.1007/s11356-017-9376-8
  • 39. He, P., Du, W., Xu, X., Zhang, H., Shao, L. & Lü, F. (2020). Effect of biochemical composition on odor emission potential of biowaste during aerobic biodegradation. Sci. Total Environ., 727, 138285, DOI: 10.1016/j.scitotenv.2020.138285
  • 40. Heyer, K.U., Hupe, K. & Stegmann, R. (2013). Methane emissions from MBT landfills. Waste Manag., 33, pp. 1853–1860, DOI: 10.1016/j.wasman.2013.05.012
  • 41. Hou, J.Q., Li, M.X., Wei, Z.M., Xi, B.D., Jia, X., Zhu, C.W. & Liu, D.M. (2013). Critical components of odors and VOCs in mechanical biological treatment process of MSW. Adv. Mater. Res., 647, pp. 438–449, DOI: 10.4028/www.scientific.net/ AMR.647.438
  • 42. Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A. & Malamakis, A. (2010). Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag., 30, pp. 1860–1870, DOI: 10.1016/j.wasman.2010.02.030
  • 43. Internet source, website accessed on 15.07.2021, available online https://www.portalsamorzadowy.pl/gospodarka-komunalna/ spalarnie-w-polsce-gdzie-dzialaja-kto-buduje-a-kto-ma-je-w-planie,253488.html.
  • 44. Jędrczak, A., den Boer, E., Kamińska-Boerak, J., Kozłowska B., Szpadt, R., Mierzwiński A., Krzyśków, A. & Kundegórski, M. (2020). Analysis of waste management costs – assessment of investment needs in the country in the field of waste prevention and waste management in connection with the new EU financial perspective 2021–2027, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://odpady.net.pl/wp-content/uploads/2021
  • 45. Jędrczak, A., den Boer, E., Kamińska-Borak, J., Szpadt, R., Krzyśków, A. & Wielgosiński, G. (2021). Ananalysis of the possibilities and barriers to the management of plastic waste from separate collection of municipal waste, and the issues of circular economy, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://ios.edu.pl/aktualnosci/analiza-mozliwosci-i-barier-zagospodarowania-odpadow-z-tworzyw-sztucznych-a-goz/
  • 46. Jiang, J., Wang, F., Wang, J. & Li, J. (2021). Ammonia and hydrogen sulphide odour emissions from different areas of a landfill in Hangzhou, China. Waste Manag. Res., 39, pp. 360–367, DOI: 10.1177/0734242X20960225
  • 47. Jońca, J., Pawnuk, M., Arsen, A. & Sówka, I. (2022) Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants – A Review. Sensors, 22, 1510. https://DOI:10.3390/s22041510
  • 48. Ko, J.H., Xu, Q. & Jang, Y.C. (2015). Emissions and Control of Hydrogen Sulfide at Landfills: A Review. Crit. Rev. Environ. Sci. Technol., 45, pp. 2043–2083. DOI:10.1080/10643389.2015.1010427.
  • 49. Kulig, A. & Szylak-Szydlowski, M. (2016). Assessment of range of olfactory impact of plant to mechanical-biological treatment of municipal waste. Chem. Eng. Trans., 54, pp. 247–252, DOI: 10.3303/CET1654042
  • 50. Le Bihan, Y., Loranger-King, D., Turgeon, N., Pouliot, N., Moreau, N., Deschênes, D. & Rivard, G. (2020). Use of alternative cover materials to control surface emissions (H2s and vocs) at an engineered landfill. Detritus, 10, pp. 118–126, DOI: 10.31025/2611-4135/2020.13909
  • 51. Liu, Y., Lu, W., Wang, H., Gao, X. & Huang, Q. (2019). Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation. Sci. Total Environ., 648, pp. 805–810, DOI: 10.1016/j.scitotenv.2018.08.213
  • 52. Liu, Y., Yang, H. & Lu, W. (2020). VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. J. Environ. Sci. (China), 98, pp. 143–150, DOI: 10.1016/j.jes.2020.05.009
  • 53. Long, Y., Zhang, S., Fang, Y., Du, Y., Liu, W., Fang, C. & Shen, D. (2017). Dimethyl sulfide emission behavior from landfill site with air and water control. Biodegradation, 28, pp. 327–335, DOI: 10.1007/s10532-017-9799-4
  • 54. Lou, Z., Wang, M., Zhao, Y. & Huang, R. (2015). The contribution of biowaste disposal to odor emission from landfills. J. Air Waste Manag. Assoc., 65, pp. 479–484, DOI: 10.1080/10962247.2014.1002870
  • 55. Lucernoni, F., Tapparo, F., Capelli, L. & Sironi, S. (2016). Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces. Atmos. Environ., 144, pp. 87–99, DOI: 10.1016/j.atmosenv.2016.08.064
  • 56. Maurer, D.L., Bragdon, A.M., Short, B.C., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Arch. Environ. Prot., 44, pp. 100–107, DOI: 10.24425/119699
  • 57. Meišutovič-Akhtarieva, M. & Marčiulaitienė, E. (2017). Research on odours emitted from non-hazardous waste landfill using dynamic olfactometry. 10th Int. Conf. Environ. Eng. ICEE 2017, pp. 27–28, DOI: 10.3846/enviro.2017.034
  • 58. Monzambe, G.M., Mpofu, K. & Daniyan, I.A. (2021). Optimal location of landfills and transfer stations for municipal solid waste in developing countries using non-linear programming. Sustain. Futur., 3, 100046, DOI: 10.1016/j.sftr.2021.100046
  • 59. Mustafa, M.F., Liu, Y., Duan, Z., Guo, H., Xu, S., Wang, H. & Lu, W. (2017). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater., 327, pp. 35–43, DOI: 10.1016/j.jhazmat.2016.11.046
  • 60. Naddeo, V., Zarra, T., Oliva, G., Chiavola, A., Vivarelli, A. & Cardona, G. (2018). Odour impact assessment of a large municipal solid waste landfill under different working phases. Glob. Nest J., 20, pp. 654–658, DOI: 10.30955/gnj.002770
  • 61. Oleniacz, R. (2014). Impact of the municipal solid waste incineration plant in Warsaw on air quality. Geomatics Environ. Eng., 8, 25, DOI: 10.7494/geom.2014.8.4.25
  • 62. Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A. & Davoli, E. (2014). Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int., 68, pp. 16–24, DOI: 10.1016/j.envint.2014.03.004
  • 63. Pawnuk, M., Grzelka, A., Miller, U. & Sówka, I. (2020). Prevention and reduction of odour nuisance in waste management in the context of the current legal and technological solutions. J. Ecol. Eng., 21, pp. 34–41, DOI: 10.12911/22998993/125455
  • 64. Polish Committee for Standardization. Polish Standard PN-EN 13725:2007: Air Quality – Determination of Odour Concentration by Dynamic Olfactometry, Polish Committee for Standardization: Warsaw, Poland, 2007.
  • 65. Ragazzi, M., Tosi, P., Rada, E.C., Torretta, V. & Schiavon, M. (2014). Effluents from MBT plants: Plasma techniques for the treatment of VOCs. Waste Manag., 34, pp. 2400–2406, DOI: 10.1016/j.wasman.2014.07.026
  • 66. Sánchez-Monedero, M.A., Fernández-Hernández, A., Higashikawa, F.S. & Cayuela, M.L. (2018). Relationships between emitted volatile organic compounds and their concentration in the pile during municipal solid waste composting. Waste Manag., 79, pp. 179–187, DOI: 10.1016/j.wasman.2018.07.041
  • 67. Scaglia, B., Orzi, V., Artola, A., Font, X., Davoli, E., Sanchez, A. & Adani, F. (2011). Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol., 102, pp. 4638–4645, DOI: 10.1016/j.biortech.2011.01.016
  • 68. Schiavon, M., Martini, L.M., Corrà, C., Scapinello, M., Coller, G., Tosi, P. & Ragazzi, M. (2017). Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environ. Pollut., 231, pp. 845–853, DOI: 10.1016/j.envpol.2017.08.096
  • 69. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Manag., 25, pp. 928–939, DOI: 10.1016/j.wasman.2005.07.006
  • 70. Shi, X., Zheng, G., Shao, Z. & Gao, D. (2020). Effect of source- -classified and mixed collection from residential household waste bins on the emission characteristics of volatile organic compounds. Sci. Total Environ., 707, 135478, DOI: 10.1016/j.scitotenv.2019.135478
  • 71. Sironi, S., Capelli, L., Céntola, P. & Del Rosso, R. (2007). Odour emissions from MSW composting process steps. Int. J. Environ. Technol. Manag., 7, pp. 304–316, DOI: 10.1504/IJETM.2007.015148
  • 72. Sironi, S., Capelli, L., Céntola, P., Del Rosso, R. & Il Grande, M. (2006). Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos. Environ., 40, pp. 7632–7643, DOI: 10.1016/j.atmosenv.2006.06.052
  • 73. Sonibare, O.O., Adeniran, J.A. & Bello, I.S. (2019). Landfill air and odour emissions from an integrated waste management facility. J. Environ. Heal. Sci. Eng., 17, pp. 13–28, DOI: 10.1007/s40201- 018-00322-1
  • 74. Statistic Poland Environment 2020. Stat. Anal. 2020, pp. 154–161.
  • 75. Statistic Poland Local Data Bank (2021) Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/temat
  • 76. Szulczyński, B., Wasilewski, T., Wojnowski, W., Majchrzak, T., Dymerski, T., Namiésnik, J. & Gębicki, J. (2017). Different ways to apply a measurement instrument of E-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors (Switzerland), 17, DOI: 10.3390/s17112671
  • 77. Tan, H., Zhao, Y., Ling, Y., Wang, Y. & Wang, X. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manag., 68, pp. 677–687, DOI: 10.1016/j.wasman.2017.07.015
  • 78. Tagliaferri, F., Invernizzi, M., Sironi, S. & Capelli, L. (2020). Influence of modelling choices on the results of landfill odour dispersion. Detritus, 12, pp. 92–99, DOI: 10.31025/2611-4135/2020.13998
  • 79. The Act of 14 December 2012 on waste (Journal of Laws of 2020, item 797). (in Polish)
  • 80. Tyrała K. (2019. Conducting research on the quantity and morphological composition of municipal waste in Bydgoszcz. Final report. Collective analysis of the entire study, R.O.T. RECYCLING ODPADY TECHNOLOGIE S.C. K, Gliwice. (in Polish)
  • 81. VDI 3882 PART 1 Olfactometry, determination of odour intensity, Verein Deutscher Ingenieure, Germany, 1992.
  • 82. VDI 3880: Olfactometry. Static Sampling, Verein Deutscher Ingenieure, Germany, 2011.
  • 83. Wang, Y., Li, L., Qiu, Z., Yang, K., Han, Y., Chai, F., Li, P. & Wang, Y. (2021). Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk. Chemosphere, 272, 129582, DOI: 10.1016/j.chemosphere.2021.129582
  • 84. Wiśniewska, M. (2020a). Analysis of Potential Exposure to Components of Municipal Solid Waste in a Mechanical Biological Treatment. Proceedings, 51, 10, DOI: 10.3390/ proceedings2020051010
  • 85. Wiśniewska, M. (2020b) Methods of assessing odour emissions from biogas plants processing municipal waste. J. Ecol. Eng., 21, pp. 140–147, DOI: 10.12911/22998993/113039
  • 86. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2021). The use of chemical sensors to monitor odour emissions at municipal waste biogas plants. Appl. Sci., 11, DOI: 10.3390/app11093916
  • 87. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020a). Odour emissions of municipal waste biogas plants-impact of technological factors, air temperature and humidity. Appl. Sci., 10, DOI: 10.3390/app10031093
  • 88. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020b). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Arch. Environ. Prot., 46, pp. 60–68, DOI: 10.24425/aep.2020.134536
  • 89. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2019). Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Appl. Sci., 1, pp. 1–10, DOI: 10.1007/s42452-019-0534-0
  • 90. Wiśniewska, M. & Szyłak-Szydłowski, M. (2021). The air and sewage pollutants from biological waste treatment. Processes, 9, pp. 1–13, DOI: 10.3390/pr9020250
  • 91. Wu, C., Shu, M., Liu, X., Sang, Y., Cai, H., Qu, C. & Liu, J. (2020). Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Manag., 103, pp. 314–322, DOI: 10.1016/j.wasman.2019.12.043
  • 92. Xu, A., Chang, H., Zhao, Y., Tan, H., Wang, Y., Zhang, Y., Lu, W. & Wang, H. (2020). Dispersion simulation of odorous compounds from waste collection vehicles: Mobile point source simulation with ModOdor. Sci. Total Environ., 711, 135109, DOI: 10.1016/j.scitotenv.2019.135109
  • 93. Yao, X.Z., Ma, R.C., Li, H.J., Wang, C., Zhang, C., Yin, S.S., Wu, D., He, X.Y., Wang, J. & Zhan, L.T. (2019). Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag., 91, pp. 128–138, DOI: 10.1016/j.wasman.2019.05.009
  • 94. Zemanek, J., Wozniak, A. & Malinowski, M. (2011). The role and place of solid waste transfer station in the waste management system. Polish Acad. Sci. Cracow Branch 2011, 11, pp. 5–13.
  • 95. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Manag., 126, pp. 771–780, DOI: 10.1016/j.wasman.2021.03.055
  • 96. Zhang, H., Schuchardt, F., Li, G., Yang, J. & Yang, Q. (2013). Emission of volatile sulfur compounds during composting of municipal solid waste (MSW). Waste Manag., 33, pp. 957–963, DOI: 10.1016/j.wasman.2012.11.008
  • 97. Zhao, Y., Lu, W. & Wang, H. (2015). Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution. J. Hazard. Mater., 300, pp. 695–701, DOI: 10.1016/j.jhazmat.2015.07.081
  • 98. Zielnica J. & Cudakiewicz P. (2016). Morphological studies of municipal waste generated in the Szczecin City Commune 2015–2016, SWECO. (in Polish)
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-caddd89a-3d47-446a-9ed2-e318d8607245
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.