PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new modification of the reduced differential transform method for nonlinear fractional partial differential equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study is to present a new modification of the reduced differential transform method (MRDTM) to find an approximate analytical solution of a certain class of nonlinear fractional partial differential equations in particular, nonlinear time-fractional wave-like equations with variable coefficients. This method is a combination of two different methods: the Shehu transform method and the reduced differential transform method. The advantage of the MRDTM is to find the solution without discretization, linearization or restrictive assumptions. Three different examples are presented to demonstrate the applicability and effectiveness of the MRDTM. The numerical results show that the proposed modification is very effective and simple for solving nonlinear fractional partial differential equations.
Rocznik
Strony
45--58
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Laboratory of Fundamental and Numerical Mathematics Department of Mathematics, Faculty of Sciences Ferhat Abbas S´etif University 1, 19000 S´etif, Algeria
  • Laboratory of Fundamental and Numerical Mathematics Department of Mathematics, Faculty of Sciences Ferhat Abbas S´etif University 1, 19000 S´etif, Algeria
Bibliografia
  • [1] Pinar, Z. (2019). On the explicit solutions of fractional Bagley-Torvik equation arises in engineering. An International Journal of Optimization and Control: Theories & Applications, 9(3), 52-58.
  • [2] Ashyralyev, A., Dal, F., & Pinar, Z. (2011). A note on the fractional hyperbolic differential and difference equations. Applied Mathematics and Computation, 217(9), 4654-4664.
  • [3] Ashyralyev, A., Dal, F., & Pinar, Z. (2009). On the numerical solution of fractional hyperbolic partial differential equations. Mathematical Problems in Engineering, DOI: 10.1155/2009/730465.
  • [4] Vinagr, B.M., Podlubny, I., Hernandez, A., & Feliu, V. (2000). Some approximations of fractional order operators used in control theory and applications. Fractional Calculus and Applied Analysis, 3(3), 231-248.
  • [5] Fitt, A.D., Goodwin, A.R., Ronaldson, K.A., &Wakeham,W.A. (2009). A fractional differential equation for a MEMS viscometer used in the oil industry. Journal of Computational and Applied Mathematics, 229(2), 373-381.
  • [6] Zhou, Y., & Peng, L. (2017). Weak solution of the time-fractional Navier-Stokes equations and optimal control. Computers & Mathematics with Applications, 73(6), 1016-1027.
  • [7] Mainardi, F. (2010). Fractional Calculus and Waves in Linear Viscoelasticity. London: Imperial College Press.
  • [8] Herzallah, M.A.E., Muslih, S.I., Baleanu, D., & Rabei, E.M. (2011). Hamilton-Jacobi and fractional like action with time scaling. Nonlinear Dynamics, 66(4), 549-555.
  • [9] Doungmo Goufo, E.F., Kumar, S., & Mugisha, S.B. (2020). Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos, Solitons & Fractals, 130, 10946.
  • [10] Kumar, S., Nisar, K.S., Kumar, R., Cattani, C., & Samet, B. (2020). A new Rabotnov fractionalexponential function based fractional derivative for diffusion equation under external force. Mathematical Methods in Applied Science, DOI: 10.1002/mma.6208.
  • [11] Kumar, S., Kumar, R., Agarwal, R.P., & Samet, B. (2020). A study on fractional Lotka Volterra population model by using Haar wavelet and Adams Bashforth-Moulton methods. Mathematical Methods in Applied Science, DOI: 10.1002/mma.6297.
  • [12] Kumar, S., Kumar, R., Singh, J., Nisar, K.S., & Kumar, D. (2020). An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy. Alexandria Engineering Journal, DOI: 10.1016/j.aej.2019.12.046.
  • [13] Ghanbari, B., Kumar, S., & Kumar, R. (2020). A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos, Solitons & Fractals, 133, 109619.
  • [14] Khalouta, A., & Kadem, A. (2019). A new numerical technique for solving Caputo time- -fractional biological population equation. AIMS Mathematics, 4(5), 1307-1319.
  • [15] Khalouta, A., & Kadem, A. (2020). A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo-Fabrizio sense. Journal of Applied Mathematics and Computational Mechanics, 19(1), 43-56.
  • [16] Jleli, M., Kumar, S., Kumar, R., & Samet, B. (2019). Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method. Alexandria Engineering Journal, DOI: 10.1016/j.aej.2019.12.022.
  • [17] Kumar, S., Kumar, A., Abbas, S., Al Qurashi, M., & Baleanu, D. (2020). A modified analytical approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations. Advances in Difference Equations, 28, DOI: 10.1186/s13662-019-2488-3.
  • [18] Hamarsheh, M., Ismail, A.I., & Odibat, Z. (2016). An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method. Applied Mathematical Sciences, 10(23), 1131-1150.
  • [19] Singh, B.K., & Kumar, P. (2017). Fractional variational iteration method for solving fractional partial differential equations with proportional delay. International Journal of Differential Equations, Article ID 5206380, 1-11.
  • [20] Kumar, S., Kumar, A., Momani, S., Aldhaifallah, M., & Nisar, K.S. (2019). Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. Advances in Difference Equations, 413.
  • [21] Kilbas, A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and Application of Fractional Differential Equations. Amsterdam: Elsevier.
  • [22] Maitama, S., & Zhao, W. (2019). New integral transform: Shehu transform a generalization of Sumudu and laplace transform for solving differential equations. International Journal of Analysis and Applications, 17(2), 167-190.
  • [23] Khalouta, A., & Kadem, A. (2019). A new method to solve fractional differential equations: Inverse fractional Shehu transform method. Applications and Applied Mathematics, 14(2), 926-941.
  • [24] Keskin, Y. & Oturanc¸, G. (2011). Reduced differential transform method for partial differential equations. International Journal of Nonlinear Sciences and Numerical Simulation, 10(6), 741-750.
  • [25] Khalouta, A., & Kadem, A. (2019). An efficient method for solving nonlinear time-fractional wave-like equations with variable coefficients. Tbilisi Mathematical Journal, 12(4), 131-147
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cad876b1-d171-4c08-b583-1898cdabe344
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.