Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents mathematical models of cylindrical gear pairs with various types of tooth profiles, such as eccentric-cycloidal, concavo-convex Novikov type, and involute. Comparative analyses were provided for the aforementioned gear meshes, aimed at determining contact patterns, sliding velocity, and transmission errors. Tooth surface modifications were also considered. The results were compared with findings for a conventional involute gearing. It was found that the contact pattern in Novikov conformal gearing is 30% greater than in the involute gear pair, and 60% greater than in the eccentric-cycloidal gear pair. The smallest sliding velocity was obtained in Novikov gearing, which may be beneficial in terms of durability.
Wydawca
Rocznik
Tom
Strony
119--129
Opis fizyczny
Bibliogr. 42 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
- 1. Pisula J., Budzik G., Przeszłowski Ł. An Analysis of the Surface Geometric Structure and Geometric Accuracy of Cylindrical Gear Teeth Manufactured with the Direct Metal Laser Sintering (DMLS) Method. Strojniski Vestnik/Journal of Mechanical Engineering. 2019; 65(2).
- 2. Budzisz W., Marciniec A. The New Gear Finishing Method Research for Highly Loaded Gears. Aerospace. 2022; 9(3).
- 3. Dziubek T., Sobolewski B., Budzik G., Gontarz M. Static Analysis of Selected Design Solutions for Weight-Reduced Gears. Advances in Science and Technology Research Journal. 2022; 16(3): 258–268.
- 4. Czerniec M., Świć A. Study of Contact Strength, Tooth Wear and Metal-Polymer Life of Worm Gears. Advances in Science and Technology Research Journal. 2022; 16(3): 143–154.
- 5. Okorn I., Nagode M., Klemenc J. Operating Performance of External Non-Involute Spur and Helical Gears: A Review. Strojniski Vestnik-Journal of Mechanical Engineering. 2021; 67(5): 256–271.
- 6. Li T., Xu H., Tian M. A Loaded Analysis Method for RV Cycloidal-pin Transmission Based on the Minimum Energy Principle. Strojniski Vestnik-Journal of Mechanical Engineering. 2020; 66(11): 655–667.
- 7. Batsch M., Markowski T., Legutko S., Krolczyk G.M. Measurement and mathematical model of convexo-concave Novikov gear mesh. Measurement. 2018; 125: 516–26.
- 8. Yang S.C. Mathematical model of a stepped triple circular-arc gear. Mechanism and Machine Theory. 2009; 44(5): 1019–1031.
- 9. Luo S., Wu Y., Wang J. The generation principle and mathematical models of a novel cosine gear drive. Mechanism and Machine Theory. 2008; 43(12): 1543–1556.
- 10. Liang D., Chen B., Tan R., Liao R. Geometric design and analysis of gear transmission with double circular arc-involute tooth profile. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017; 231(11): 2100–2109.
- 11. Hlebanja G., Hlebanja J., Okorn I. Research of Gears With Progressive Path of Contact. In: Proc. of 8th International Power Transmission and Gearing Conference, 2000, 215–221.
- 12. Chen Z., Ding H., Li B., Luo L., Zhang L., Yang J. Geometry and parameter design of novel circular arc helical gears for parallel-axis transmission. Advances in Mechanical Engineering. 2017; 9(2).
- 13. Chen Z., Zeng M., Fuentes-Aznar A. Computerized design, simulation of meshing and stress analysis of pure rolling cylindrical helical gear drives with variable helix angle. Mechanism and Machine Theory. 2020; 153: 103962.
- 14. Chen Z., Zeng M., Fuentes-Aznar A. Geometric Design, Meshing Simulation, and Stress Analysis of Pure Rolling Rack and Pinion Mechanisms. Journal of Mechanical Design. 2019; 142(3).
- 15. Chen Z., Lei B., Zeng M., Li Y., Fuentes-Aznar A. Computerized design, simulation of meshing and stress analysis of pure rolling internal helical gear drives with combined tooth profiles. Mechanism and Machine Theory. 2022; 104959.
- 16. Hlebanja G., Hlebanja J. Contribution to the Development of Cylindrical Gears. In: Power Transmissions. Springer, 2013, 309–320.
- 17. Zorko D., Kulovec S., Tavčar J., Duhovnik J. Different teeth profile shapes of polymer gears and comparison of their performance. Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2017; 11(6).
- 18. Hlebanja G., Hlebanja J. S-gears: From Metal to Polymer Solution. In: Advanced Gear Engineering. Springer. 2018; 255–269.
- 19. Dyson A., Evans H.P., Snidle W. Wildhaber Novikov circular arc gears: Geometry and Kinematics. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences. 1986; 403(1825): 313–349.
- 20. Radzevich S.P. High-conformal Gearing: Kinematics and Geometry. CRC Press, 2016.
- 21. Li X., Li C., Chen B., Liang D. Design and investigation of a cycloid helical gear drive. Journal of Mechanical Science and Technology. 2017; 31(9): 4329–4336.
- 22. Batsch M. Rapid Prototyping and Tooth Contact Analysis of Eccentric Cycloid Gear Mesh. Journal of KONBiN. 2019; 49(1): 369–382.
- 23. Batsch M. A novel method of obtaining honing tool profile for machining gears with profile modifications. ASME Journal of Manufacturing Science and Engineering. 2020; 142(9): 091004.
- 24. ISO 21771: 2007(E). Gears – Cylindrical involute gears and gear pairs – Concepts and geometry.
- 25. Klingelnberg J. Bevel Gear: Fundamentals and Applications. Springer, 2016.
- 26. Litvin F.L., Chen N.X., Chen J.S. Computerized determination of curvature relations and contact ellipse for conjugate surfaces. Computer Methods in Applied Mechanics and Engineering. 1995; 125(1): 151–170.
- 27. Pisula J. An analysis of the effect of the application of helical motion and assembly errors on the meshing of a spiral bevel gear using duplex helical method. Advances in Manufacturing Science and Technology. 2016; 40(1): 19–31.
- 28. Kawalec A., Wiktor J. Simulation of generation and tooth contact analysis of helical gears with crowned flanks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008; 222(9): 1147–1160.
- 29. Sobolak M. Discrete numerical method of tooth contact analysis (TCA) with α-bufor use. Archives of Mechanical Technology and Automation. 2007; 27(2): 153–160.
- 30. Marciniec A., Pacana J., Pisula J., Fudali P. Comparative analysis of numerical methods for the determination of contact pattern of spiral bevel gears. Aircraft Engineering and Aerospace Technology. 2018; 90(2): 359–367.
- 31. Sobolak M. Analysis and synthesis of mating gear tooth surface by discrete methods. (Analiza i synteza współpracy powierzchni kół zębatych metodami dyskretnymi) Rzeszow University of Technol. Publ., 2006.
- 32. Johnson K.L. Contact mechanics. Cambridge University Press, 1987.
- 33. Batsch M., Homik W., Markowski T. Cylindrical Gears with Increased Contact Area – Proposal of Application in Watercrafts Power Transmission Systems. Solid State Phenomena. 2015; 236: 26–30.
- 34. Markowski T., Batsch M. Analytical and numerical methods to obtain contact pattern of convexo-concave Novikov gearing. Scientific Journal of Silesian University of Technology. Series Transport. 2014; (82): 155-165.
- 35. Batsch M., Markowski T. Influence of Novikov convexo-concave gear parameters on contact pattern. Scientific Journal of Silesian University of Technology Series Transport. 2015; 89: 89–99.
- 36. Levenberg K. A method for the Solution of Certain Problems in Least Squares. Quarterly of Applied Mathematics. 1944; 2(2): 164–168.
- 37. Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics. 1963; 11(2): 431–441.
- 38. de Berg M., Cheong O., van Kreveld M., Overmars M. Computational Geometry: Algorithms and Applications. Springer, 2008.
- 39. Möller T., Trumbore B. Fast, Minimum Storage Ray-Triangle Intersection. Journal of Graphics Tools. 1997; 2(1): 21–28.
- 40. Litvin F.L, Fuentes A., Gonzalez-Perez I., Carvenali L., Kawasaki K., Handschuh R.F. Modified involute helical gears: computerized design, simulation of meshing and stress analysis. Computer Methods in Applied Mechanics and Engineering. 2003; 192(33): 3619–3655.
- 41. Litvin F.L., Fan Q., Vecchiato D., Demenego A., Handschuh R.F., Sep T.M. Computerized generation and simulation of meshing of modified spur and helical gears manufactured by shaving. Computer Methods in Applied Mechanics and Engineering. 2001; 190(39): 5037–5055.
- 42. Fuentes-Aznar A., Ruiz-Orzaez R., Gonzalez-Perez I. Comparison of spur, helical and curvilinear gear drives by means of stress and tooth contact analyses. Meccanica 2017; 52(7): 1721–1738.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cad6e8ba-aa60-45ef-9054-d2a761164e7f