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SMALL-GAIN THEOREM
FOR A CLASS OF ABSTRACT PARABOLIC SYSTEMS
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Abstract. We consider a class of abstract control system of parabolic type with observation
which the state, input and output spaces are Hilbert spaces. The state space operator is
assumed to generate a linear exponentially stable analytic semigroup. An observation and
control action are allowed to be described by unbounded operators. It is assumed that the
observation operator is admissible but the control operator may be not. Such a system
is controlled in a feedback loop by a controller with static characteristic being a globally
Lipschitz map from the space of outputs into the space of controls. Our main interest is to
obtain a perturbation theorem of the small-gain-type which guarantees that null equilibrium
of the closed-loop system will be globally asymptotically stable in Lyapunov’s sense.
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1. INTRODUCTION

Since G. Weiss has published his paper [15] on well-posedness of the closed-loop system
treated as a feedback perturbation of the open-loop system, several papers continuing
this topics appeared. A different presentation of the Weiss perturbation result has
been proposed in [1] and [2].

In [7], the last results, have been reformulated in the terms of boundary control
systems in factor form and completed by an original contribution. One of a novelty
of that paper was that, contrary to the previous results, the author has proved that
for some parabolic systems the Weiss perturbation result holds even without the
admissibility of factor control operator.

In the present paper we continue this contribution by showing that under a mild
assumptions the perturbation result of [7, Theorem 5.1, p. 1115] remains valid for
nonlinear, globally Lipschitz perturbations. The result can be regarded as either
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the small-gain-type theorem or the circle criterion for an abstract parabolic system
because here the perturbation describes a feedback control. To obtain this result,
the standard L2(0,∞; Y) - admissibility of the factor control operator is replaced
by the so-called Balakrishnan-Washburn estimates which represent a kind of balance
between admissibility-like properties of the output and control operators.

The paper is organized as follows. In Section 2 we give an overview of the theory
of boundary systems in factor form and we introduce basic concepts. L. De Simon’s
theorem on maximal parabolic regularity is recalled – Lemma 2.5 as an important
analytic tool.

The main result of Section 3 (Theorem 3.1) links the maximal parabolic regularity
with Banach’s fixed point theorem. To be more precise, Theorem 3.1 provides sufficient
conditions under which the perturbed feedback system has L2(0,∞; H) – solutions.

In the next Section 4, by adding some extra assumption, we prove a result (The-
orem 4.2) on existence of weak solutions and the global asymptotic stability, in the
Lyapunov’s sense, of the null equilibrium point. Our proof bases on observation that
though the system may not have a weak solution for an arbitrary L2(0,∞; U) – control,
it can have weak solution for a control generated in a feedback control loop. This is
due to a smoothing action of the feedback.

Section 5 brings an exhaustive example – the unloaded electric RC – transmission
line. It is shown that Theorem 4.2 provides sufficient conditions for existence of weak
solutions to the closed loop feedback (perturbed) system though the open loop system
may not have weak solution for an arbitrary control (Remark 5.3). The largest Lipschitz
constant for which the origin is the globally asymptotically stable solution is identified
using graphical and analytical criteria.

The final Section 6 contains a discussion of results. In particular, a link with the
theory of nonlinear semigroups is indicated, which deserves some further investigations.

2. AN OVERVIEW OF CONTROL SYSTEMS IN FACTOR FORM

Consider a class of controlled systems with observation governed by the model in
factor form 




ẋ(t) = A [x(t) +Du(t)] ,
x(0) = x0,

y(t) = Cx(t),
(2.1)

where the state operator A : (D(A) ⊂ H) −→ H generates an exponentially stable
C0-semigroup {S(t)}t≥0 on a Hilbert space H with scalar product 〈·, ·〉H.

L(Z1, Z2) will be used to denote bounded everywhere defined operators acting
from a Banach space Z1 into a Banach space Z2 and the standard abbreviation L(Z)
will be made when Z = Z1 = Z2.

A family {S(t)}t≥0 ⊂ L(H) is a C0-semigroup on H if (i) S(0) = I, S(t + τ) =
S(t)S(τ) for t, τ ≥ 0 and (ii) S(t)z → z as t → 0 for every z ∈ H. {S(t)}t≥0 is
exponentially stable (EXS) if there exist M ≥ 1 and α > 0 such that

‖S(t)z‖H ≤Me−αt ‖z‖H , t ≥ 0, z ∈ H. (2.2)
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We say that A generates {S(t)}t≥0 if

Az = lim
h→0

1
h

[S(h)z − z], D(A) =
{
z ∈ H : there exists lim

h→0

1
h

[S(h)z − z]
}
.

Such an operator is necessarily densely defined and closed.
Since s 7→ (sI − A)−1z is the Laplace transform of t 7→ S(t)z then, by (2.2),

the half-plane {s ∈ C : Re s > −α} is contained in ρ(A) – the resolvent set of A
which, in particular, implies that A is invertible, A−1 ∈ L(H).

Next, C : (D(C) ⊂ H) −→ Y, CA−1 ∈ L(H,Y), D ∈ L(U,H) with range R(D) ⊂
D(C), CD ∈ L(U,Y) and Y and U are Hilbert spaces with scalar products 〈·, ·〉Y
and 〈·, ·〉U, respectively.

Let us introduce

H := (CA−1)∗ ⇐⇒ H∗ = CA−1 ∈ L(H,Y)

to simplify future notation.
Proofs of all results appearing in this Section are given in [7, Section 2].

2.1. ADMISSIBLE OBSERVATION AND CONTROL OPERATORS

We shall use the semigroups of left-shifts on L2(0,∞;X), X is a Hilbert space, which
will be denoted as {TX(t)}t≥0,

(TX(t)f) (τ) := f(t+ τ) for almost all t, τ ≥ 0.

It is generated by
Lf = f ′, D(L) = W1,2([0,∞);X), (2.3)

W1,2([0,∞);X) :=
{
f ∈ L2(0,∞;X) : f ′ ∈ L2(0,∞;X)

}
⊂ C([0,∞);X).

The adjoint of TX(t),

(T ∗X(t)f) (τ) :=
{
f(τ − t) if τ ≥ t

0 if 0 ≤ τ < t

}

is the right-shift operator on L2(0,∞;X) and it is clearly generated by L∗ := R,

Rf = −f ′, D(R) = W1,2
0 ([0,∞);X) (2.4)

Define Z ∈ L(H,L2(0,∞; Y)),

(Zz) (t) := H∗S(t)z


⇐⇒ Z∗f =

∞∫

0

S∗(t)Hf(t)dt


 .

The operator, called the observability map,

Ψ := LZ, D(Ψ) = {x ∈ H : Zx ∈ D(L)}
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is closed and densely defined, with Ψ|D(A) = ZA, and therefore it has closed and
densely defined adjoint operator

Ψ∗ = A∗Z∗, D(Ψ∗) = {y ∈ L2(0,∞; Y) : Z∗y ∈ D(A∗)},

and Ψ∗|D(R) = Z∗R. Here L, R are given by (2.3) and (2.4), respectively, with X = Y.

Definition 2.1. C is an admissible observation (output) operator if Ψ ∈
L(H,L2(0,∞; Y)) (or, by the closed graph theorem, R(Z) ⊂ D(L) or Ψ is bounded).

Lemma 2.2. If C is admissible then Ψ is also a linear densely defined and bounded
operator from H into L1(0,∞; Y).

Next, we define W ∈ L(L2(0,∞; U),H) as follows:

Wf :=
∞∫

0

S(t)Df(t)dt [⇐⇒ (W∗z) (t) = D∗S∗(t)z] .

The operator, called the reachability map,

Φ := AW, D(Φ) = {u ∈ L2(0,∞; U) :Wu ∈ D(A)}

is closed and densely defined, with Φ|D(R) = WR, and therefore it has closed and
densely defined adjoint operator

Φ∗ = LW∗, D(Φ) = {x ∈ H : W∗x ∈ D(L)},

with Φ∗|D(A∗) = W∗A∗. Here L, R are given by (2.3) and (2.4), respectively, with
X = U.

Definition 2.3. D is an admissible factor control operator if Φ ∈ L(L2(0,∞; U),H)
(or, by the closed graph theorem, R(W) ⊂ D(A) or Φ is bounded).

Using duality arguments, we can state the following result.

Lemma 2.4. D is an admissible factor control operator iff D∗A∗ is an admissible
observation operator with respect to the semigroup {S∗(t)}t≥0.

2.2. REPRESENTATION OF THE STATE UNDER PARABOLIC REGULARITY

Recall that {S(t)}t≥0 is an analytic semigroup if, in addition to axioms (i), (ii) of the
C0-semigroup, there holds: (iii) for every z ∈ H the mapping (0,∞) 3 t 7→ S(t)z is
a real analytic function.

Lemma 2.5 (maximal L2(0,∞; H) - parabolic regularity [4]). The following conditions
are equivalent:

(i) A generates an analytic EXS semigroup {S(t)}t≥0,
(ii) A(sI −A)−1 ∈ H∞(C+,L(H)),



Small-gain theorem for a class of abstract parabolic systems 655

(iii) f 7−→ AS(·) ? f ∈ L(L2(0,∞; H)),
(iv) For every f ∈ L2(0,∞; H) there exists a unique strong (absolutely continuous)

solution of the Cauchy problem: ż = Az + f, z(0) = 0.

Thanks to Lemma 2.5, for every u ∈ L2(0,∞; U)

x(t) := S(t)x0 +A
t∫

0

S(t− τ)Du(τ)dτ = S(t)x0 +
t∫

0

AS(t− τ)Du(τ)dτ, (2.5)

is a unique L2-solution of (2.1), i.e., x ∈ L2(0,∞; H), which also satisfies (2.1) in a weak
sense, i.e., for every u ∈ L2(0,∞; U) and w ∈ D(A∗), the function t 7−→ 〈x(t), w〉H is
in W1,2(0,∞), and

d
dt 〈x(t), w〉H = d

dt

〈
S(t)x0 +A

t∫

0

S(t− τ)Du(τ)dτ, w
〉

H

= d
dt 〈x0, S

∗(t)w〉H + d
dt

〈 t∫

0

S(t− τ)Du(τ)dτ,A∗w
〉

H

= 〈x0, S
∗(t)A∗w〉H +

〈
A

t∫

0

S(t− τ)Du(τ)dτ +Du(t),A∗w
〉

H

=
〈
S(t)x0 +A

t∫

0

S(t− τ)Du(τ)dτ +Du(t),A∗w
〉

H

= 〈x(t) +Du(t),A∗w〉H,

lim
t→0
〈x(t), w〉H = lim

t→0

〈
S(t)x0 +A

t∫

0

S(t− τ)Du(τ)dτ, w
〉

H

= 〈x0, w〉H + lim
t→0

〈 t∫

0

S(t− τ)Du(τ)dτ,A∗w
〉

H

= 〈x0, w〉H.

However, x is not yet a weak solution of (2.1) as we do not know whether x is
a continuous function satisfying x(0) = x0.

Similar problem has been treated in [11] where a counterexample due to J.L. Lions
was invoked to show that generally x is not continuous until u is an arbitrary L2(0,∞; U)
function.

Lion’s example is naturally obtained as a by-product of a physical problem analysed
in Section 5, see especially Remark 5.3.
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2.3. REPRESENTATION OF THE OUTPUT
UNDER PARABOLIC REGULARITY

Under the parabolic regularity there holds

S(t)z ∈ D(A∞), t > 0, z ∈ H.

Hence
(Ψz) (t) = CS(t)z = H∗AS(t)z, t > 0, z ∈ H,

C(sI −A)−1 = H∗A(sI −A)−1 ∈ H∞(C+,L(H,Y))

while C is admissible iff
C(sI −A)−1z ∈ H2(C+,Y).

Assume that C is admissible. Assume also that

Ĝ ∈ H∞(C+,L(U,Y)),
Ĝ(s) := sC(sI −A)−1D − CD = s2H∗(sI −A)−1D − sH∗D − CD;

(2.6)

Ĝ is called the transfer function of (2.1).
Next, we introduce the input-output operator F,

(Fu) (t) :=
t∫

0

H∗A2S(t− τ)Du(τ)dτ, (F̂u)(s) = CA(sI −A)−1Dû(s) = Ĝ(s)û(s),

so F ∈ L(L2(0,∞; U),L2(0,∞; Y)), provided that (2.6) holds.
Finally the output equation reads as

y = Ψx0 + Fu, x0 ∈ H, u ∈ L2(0,∞; U).

3. A SMALL-GAIN PERTURBATION THEOREM FOR L2-SOLUTIONS

Consider the Lur’e system of automatic feedback control having the structure de-
picted in Figure 1, where the feedback u = −f(y) is given by a nonlinear mapping
f : Y 3 y 7→ f(y) ∈ U, called a static characteristic of the controller. We assume that:

there exists µ ∈ L(Y,U) : y 7−→ f(y)− µy satisfies the Lipschitz
condition with Lipschitz constant m > 0; f(0) = 0.

(3.1)
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v y(t)

CONTROLLER

u(t)

PLANT

{
ẋ(t) = A[x(t) +Du(t)]
x(0) = x0
y(t) = Cx(t)

f - ---����0 +

−6

Fig. 1. The Lur’e control system with negative feedback

In what follows, N will denote the Nemytskii operator of superposition (N y)(t) :=
f [y(t)] induced by f . By (3.1), Nnew := N − µI is the Lipschitz mapping from
L2(0,∞; Y) into L2(0,∞; U) with the same Lipschitz constant m.

The closed-loop system is governed by

y = Ψx0 + Fu = Ψx0 − FN y ⇐⇒ (I + Fµ)y = Ψx0 − FNnewy. (3.2)

Assume, in addition, that

I + Fµ is boundedly invertible ⇐⇒ (I + Ĝµ)−1 ∈ H∞(C+,L(Y)). (3.3)

Under the assumption (3.3), (3.2) takes the form

y = (I + Fµ)−1Ψx0 − (I + Fµ)−1FNnewy (3.4)

and, by Banach’s fixed point theorem, (3.4) has a unique solution yc ∈ L2(0,∞; Y),
provided that

∥∥∥(I + Ĝµ)−1Ĝ
∥∥∥

H∞(C+,L(U,Y))
=
∥∥∥Ĝ(I + µĜ)−1

∥∥∥
H∞(C+,L(U,Y))

<
1
m
, (3.5)

where, by the Phragmén-Lindelöf principle, H∞(C+,L(U,Y)) norm can be replaced
by L∞(jR,L(U,Y)) norm.

Now uc := −N yc ∈ L2(0,∞; U). Moreover, by (3.4) and (3.5),

‖yc‖L2(0,∞;Y) ≤ γ1‖x0‖H; γ1 :=

∥∥∥(I + Ĝµ)−1
∥∥∥

H∞(C+,L(Y))
‖Ψ‖L(L2(0,∞;Y))

1−m
∥∥∥(I + Ĝµ)−1Ĝ

∥∥∥
H∞(C+,L(U,Y))

. (3.6)

Substituting u = uc in (2.5) and denoting the corresponding x as xc,

xc(t) = S(t)x0 −
t∫

0

AS(t− τ)Df [yc(τ)]dτ, (3.7)

we conclude that the closed-loop state xc belongs to L2(0,∞; H).
The results can be gathered as the following theorem.
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Theorem 3.1. Assume that:

(i) A generates an EXS analytic semigroup,
(ii) C is admissible,
(iii) The transfer function Ĝ satisfies (2.6),
(iv) (3.1), (3.3) and (3.5) hold.

Then, the closed-loop state xc, given by (3.7), is in L2(0,∞; H).

4. A SMALL-GAIN PERTURBATION THEOREM FOR WEAK SOLUTIONS

We begin from introducing an important definition.

Definition 4.1. Let A be an infinitesimal generator of an EXS analytic semi-
group {S(t)}t≥0 on H. We say that the pair (H,D) satisfies the conjugate
Balakrishnan–Washburn estimates if there exist α ∈ (0, 1

2 ), δ > 0 and two continuous
increasing functions ηh = ηh(t) and ηd = ηd(t) defined on [0,∞) growing no faster
than polynomially, such that

‖AS(t)D‖L(U,H) = ‖D∗A∗S∗(t)‖L(H,U) ≤ηd(t)
e−δt

tα
, t > 0, (4.1)

‖H∗AS(t)‖L(H,Y) = ‖A∗S∗(t)H‖L(Y,H) ≤ηh(t) e
−δt

t1−α
, t > 0. (4.2)

Observe that (4.2) implies that C is an admissible observation operator, but (4.1)
does not imply that D is an admissible factor control operator.

If H∗ is a finite rank operator then the observability map Ψ is even a Hilbert-
-Schmidt (HS) operator [5, Theorem 5].

In what follows B(U)C([0,∞);Z) will denote the Banach space of bounded (uni-
formly) continuous functions defined on [0,∞) and taking values in a Hilbert space Z,
equipped with standard norm

‖f‖B(U)C([0,∞);Z) := sup
t≥0
‖f(t)‖Z, f ∈ B(U)C([0,∞);Z),

while B(U)C0([0,∞);Z) will stand for its closed subspace consisting of functions that
have zero limit at infinity.

Theorem 4.2. Assume that:

(i) A generates an EXS analytic semigroup,
(ii) the pair (H,D) satisfies conjugate Balakrishnan–Washburn estimates (4.2)

and (4.1),

(iii) Ĝ ∈ H∞(C+; L(U,Y)), ∞ >
1

2π

+∞∫

−∞

‖Ĝ(jω)‖2
L(U,Y)dω := γ2

2 ,

(iv) (3.1), (3.3) and (3.5) hold.
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Then, for any x0 ∈ H the initial-value problem for the closed-loop system
{
ẋ(t) =Acx(t),
x(0) =x0,

(4.3)

Acx = A [x−Df(Cx)] , D(Ac) = {x ∈ H : x ∈ D(C), x−Df(Cx) ∈ D(A)} (4.4)

has a unique weak solution in BC0([0,∞); H) and the origin is globally asymptotically
stable in Lyapunov’s sense (GAS), i.e., it is stable:

∀ε ∃δ > 0 : ‖x0‖H < δ =⇒ ∀t ≥ 0 : ‖x(t)‖H < ε

and globally attracting: ‖x(t)‖H −→ as t→∞ for any x0 ∈ H.

Proof. Part 1. Here suppu = suppG = supp(Fu) = [0,∞), and by properties of
the inverse Fourier transformation

‖(Fu)(t)‖Y ≤ 1
2π

+∞∫

−∞

‖(F̂u)(jω)‖Ydω = 1
2π

+∞∫

−∞

‖Ĝ(jω)û(jω)‖Ydω

≤ 1
2π

+∞∫

−∞

‖Ĝ(jω)‖L(U,Y)‖û(jω)‖Udω

≤ γ2‖û‖H2(C+,U) = γ2‖u‖L2(0,∞;U), t ≥ 0, u ∈ L2(0,∞; U).

This, jointly with a vector version of the Riemann–Lebesgue lemma

f̂ ∈ L1(jR; Y) =⇒ lim
t→∞

+∞∫

−∞

ejωtf̂(jω)dω = 0, (4.5)

applied to f̂ = F̂u, yields

F ∈ L(L2(0,∞; U),BUC0([0,∞); Y)), ‖F‖L(L2(0,∞;U),BUC0([0,∞);Y)) ≤ γ2. (4.6)

A classical proof of (4.5) based on the identity

‖tf(t)‖Y =

∥∥∥∥∥∥
1

2πj

+∞∫

−∞

dejωt
dω f̂(jω)

∥∥∥∥∥∥
Y

= 1
2π

∥∥∥∥∥∥
ejωtf̂(jω)

∣∣∣
+∞

−∞
−

+∞∫

−∞

ejωtf̂ ′(jω)dω

∥∥∥∥∥∥
Y

= 1
2π

∥∥∥∥∥∥

+∞∫

−∞

ejωtf̂ ′(jω)dω

∥∥∥∥∥∥
Y

≤ 1
2π ‖f̂

′‖L1(jR;Y), f̂ ∈W1,1(jR; Y)

deserves a comment, namely: û ∈W1,2(jR; Y) (a dense subset in L2(jR; Y)) implies
f̂ = Ĝû ∈ W1,1(jR; Y) (a dense subset in L1(jR; Y)). Indeed, f̂ ′ = Ĝ′û + Ĝû′.
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The second component is clearly in L1(jR; Y) as a product of two L2(jR; Y)-functions.
Next observe that

Ĝ′(s) = C(sI −A)−1D − sC(sI −A)−2D = C(sI −A)−1[I − s(sI −A)−1]D
= −H∗A(sI −A)−1A(sI −A)−1D.

H∗A(sI − A)−1 is the Laplace transform of H∗AS(·) and, by (4.2) and the vector
Paley-Wiener theorem,

∞ >

∞∫

0

‖H∗AS(t)z‖2
Ydt = 1

2π

+∞∫

−∞

‖H∗A(jωI −A)−1z‖2
Ydω, z ∈ H.

Application of the principle of uniform boundedness yields: ω 7−→ H∗A(jωI −A)−1 is
in L2(jR; L(H,Y)).
A(sI −A)−1D is the Laplace transform of AS(·)D and, by (4.1),

∞ >

∞∫

0

‖AS(t)Du‖Hdt ≥ sup
s∈C+

‖A(sI −A)−1Du‖Hdω, u ∈ U.

Applying the principle of uniform boundedness yields ω 7−→ A(jωI − A)−1D
is in L∞(jR; L(U,H)), whence Ĝ′ ∈ L2(jR; L(U,Y)). Consequently Ĝ′û, f̂ ′ ∈
L1(jR; L(U,Y)).
Part 2. Lifting of L2(0,∞; H)-solutions to C(0,∞; H)-solutions.

Basing on the fact that the control uc is not an arbitrary L2(0,∞; U)–function as it
is generated in the feedback mode, which can smooth solutions, we shall demonstrate
that L2(0,∞; H)-solution xc, given by (3.7), can be lifted to a weak solution xc ∈
BC([0,∞); H). To achieve this goal we make the following observation. By (3.1) and
because (3.2) takes the form yc = Ψx0 + Fuc, we get for almost all t ≥ 0:

‖f [yc(t)]‖U ≤ (m+ ‖µ‖L(Y,U))‖yc(t)‖Y

≤ (m+ ‖µ‖L(Y,U)) [‖(Ψx0)(t)‖Y + ‖(Fuc)(t)‖Y] .
(4.7)

To prove that [0,∞) 3 t 7−→
t∫

0

AS(t − τ)Df [yc(τ)]dτ ∈ H is right-continuous at

a fixed t = t1 > 0 we take t2 > t1 and examine the expression:
t2∫

0

AS(t2 − τ)Df [yc(τ)]dτ −
t1∫

0

AS(t1 − τ)Df [yc(τ)]dτ

=
t1∫

0

AS(t2 − τ)Df [yc(τ)]dτ −
t1∫

0

AS(t1 − τ)Df [yc(τ)]dτ

+
t2∫

t1

AS(t2 − τ)Df [yc(τ)]dτ.

(4.8)
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In the second line, the first integral tends to the second one as t2 −→ t1. Indeed,
recalling that for an EXS analytic semigroup there exist C, ε > 0 such that
‖AS(t)‖L(H) ≤ C e−εt

t , we obtain

‖AS(t2 − τ)Df [yc(τ)]−AS(t1 − τ)Df [yc(τ)]‖H

= ‖AS(t1 − τ) {[S(t2 − t1)− I]Df [yc(τ)]}‖H ≤
C

t1 − τ
‖[S(t2 − t1)− I]Df [yc(τ)]‖H .

Hence, by the strong continuity of {S(t)}t≥0, AS(t2 − τ)Df [yc(τ)] strongly tends to
AS(t1 − τ)Df [yc(τ)] for almost all τ ∈ [0, t1).

Next, ‖AS(t2−τ)Df [yc(τ)]‖H is majorized by a constant multiplied by ‖f [yc(τ)]‖U
because ‖AS(t2 − τ)D‖L(U,H) is bounded on [0, t1] as t2 − τ is separated from 0.

The needed result follows from the Lebesgue dominated convergence theorem as
uc ∈ L2(0,∞; U) implies uc ∈ L1(0, t1; U).

Employing (4.7), (4.1), (4.2), (4.6) and (3.6) we get

‖AS(t2 − τ)Df [yc(τ)]‖H ≤ ‖AS(t2 − τ)D‖L(U,H)‖f [yc(τ)]‖U

≤ (m+ ‖µ‖L(Y,U))‖AS(t2 − τ)D‖L(U,H) [‖(Ψx0)(τ)‖Y + ‖(Fuc)(τ)‖Y]
≤ (m+ ‖µ‖L(Y,U))‖AS(t2 − τ)D‖L(U,H)‖H∗AS(τ)‖L(H,Y)‖x0‖H

+ (m+ ‖µ‖L(Y,U))‖AS(t2 − τ)D‖L(U,H)‖Fuc‖BUC0([0,∞);Y)

≤ (m+ ‖µ‖L(Y,U))
[

Md

(t2 − τ)α
Mh

τ1−α + Md

(t2 − τ)α γ2mγ1

]
‖x0‖H,

where Md and Mh are majorants of ηd(t)e−δt and ηh(t)e−δt, respectively.
Hence

∥∥∥∥∥∥

t2∫

t1

AS(t2 − τ)Df [yc(τ)]dτ

∥∥∥∥∥∥
H

≤ (m+ ‖µ‖L(Y,U))‖x0‖HMdMh

t2∫

t1

dτ
(t2 − τ)ατ1−α

+ (m+ ‖µ‖L(Y,U))‖x0‖HMdγ2mγ1

t2∫

t1

dτ
(t2 − τ)α

= (m+ ‖µ‖L(Y,U))‖x0‖HMdMh

1∫

t1
t2

dr
(1− r)αr1−α

+ (m+ ‖µ‖L(Y,U))‖x0‖HMdγ2mγ1
1

1− α (t2 − t1)1−α −→ 0 as t2 → t1.
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To prove the left-continuity at a fixed t = t1 > 0 we take t2 ∈ (0, t1) and examine
the expression

t1∫

0

AS(t1 − τ)Df [yc(τ)]dτ −
t2∫

0

AS(t2 − τ)Df [yc(τ)]dτ

=
t2∫

0

AS(t1 − τ)Df [yc(τ)]dτ −
t2∫

0

AS(t2 − τ)Df [yc(τ)]dτ

+
t1∫

t2

AS(t1 − τ)Df [yc(τ)]dτ.

In the second line, the first integral tends to the second one as t2 → t1. Indeed, recalling
once more the estimate ‖AS(t)‖L(H) ≤ C e−εt

t , one obtains

‖AS(t1 − τ)Df [yc(τ)]−AS(t2 − τ)Df [yc(τ)]‖H
= ‖AS(t2 − τ) {[S(t1 − t2)− I]Df [yc(τ)]}‖H

≤ C

t2 − τ
‖[S(t1 − t2)− I]Df [yc(τ)]‖H .

Hence, by the strong continuity of {S(t)}t≥0, AS(t1 − τ)Df [yc(τ)] strongly tends to
AS(t2 − τ)Df [yc(τ)] for almost all τ ∈ [0, t2).

Next, ‖AS(t1−τ)Df [yc(τ)]‖H is majorized by a constant multiplied by ‖f [yc(τ)]‖U
because ‖AS(t1 − τ)D‖L(U,H) is bounded on [0, t2] as t1 − τ is separated from 0.

The needed result follows from the Lebesgue dominated convergence theorem as
uc ∈ L2(0,∞; U) implies uc ∈ L1(0, t2; U).

Employing (4.7), (4.1), (4.2), (4.6) and (3.6) we get

‖AS(t1 − τ)Df [yc(τ)]‖H
≤ ‖AS(t1 − τ)D‖L(U,H)‖f [yc(τ)]‖U

≤ (m+ ‖µ‖L(Y,U))‖AS(t1 − τ)D‖L(U,H) [‖(Ψx0)(τ)‖Y + ‖(Fuc)(τ)‖Y]
≤ (m+ ‖µ‖L(Y,U))‖AS(t1 − τ)D‖L(U,H)‖H∗AS(τ)‖L(H,Y)‖x0‖H

+ (m+ ‖µ‖L(Y,U))‖AS(t1 − τ)D‖L(U,H)‖Fuc‖BUC0([0,∞);Y)

≤ (m+ ‖µ‖L(Y,U))
[

Md

(t1 − τ)α
Mh

τ1−α + Md

(t1 − τ)α γ2mγ1

]
‖x0‖H,
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whence
∥∥∥∥∥∥

t1∫

t2

AS(t1 − τ)Df [yc(τ)]dτ

∥∥∥∥∥∥
H

≤ (m+ ‖µ‖L(Y,U))‖x0‖HMdMh

t1∫

t2

dτ
(t1 − τ)ατ1−α

+ (m+ ‖µ‖L(Y,U))‖x0‖HMdγ2mγ1

t1∫

t2

dτ
(t1 − τ)α

= (m+ ‖µ‖L(Y,U))‖x0‖HMdMh

1∫

t2
t1

dr
(1− r)αr1−α

+ (m+ ‖µ‖L(Y,U))‖x0‖HMdγ2mγ1
1

1− α (t1 − t2)1−α −→ 0 as t2 → t1.

Part 3. Lifting of C(0,∞; H)-solutions to BC0([0,∞); H)-solutions. The continuity at
t = 0 will follow from an estimate for a solution, valid on [0,∞), we are going to prove.

We recall once more the estimate
∥∥∥∥∥∥

t∫

0

AS(t− τ)Df [yc(τ)]dτ

∥∥∥∥∥∥
H

≤ (m+ ‖µ‖L(Y,U))[E1(t) + E2(t),

E1(t) :=
t∫

0

‖AS(t− τ)D‖L(U,H)‖ (Ψx0) (τ)‖Ydτ

E2(t) :=
t∫

0

‖AS(t− τ)D‖L(U,H)‖ (Fuc) (τ)‖Ydτ,

which will be interpreted here in a slightly different manner.
Recall that, by Part 1, Fuc ∈ BUC0([0,∞); Y) with ‖Fuc‖BUC0([0,∞),Y) ≤ γ2mγ1.
Let BUC00[0,∞) be a closed subspace of BUC0[0,∞) of functions vanishing at 0.

By (4.1) and the standard convolution result ([3, Proposition 0.2.1], where it is shown
only that a ∈ L1(0,∞), b ∈ BUC0[0,∞) implies a ? b ∈ BUC0[0,∞); however in this
case

|(a ? b)(t)| ≤ ‖b‖BUC0[0,∞)

t∫

0

|a(τ)|dτ → 0 as t→ 0

because a ∈ L1(0,∞))

t 7−→ ‖AS(t)D‖L(U,H) ∈ L1(0,∞), L1(0,∞) ? BUC0[0,∞) ⊂ BUC00[0,∞) (4.9)
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and therefore

E2 ∈ BUC00[0,∞); |E2(t)| ≤ ‖AS(·)D‖L1(0,∞;L(U,H)) ‖Fuc‖BUC0([0,∞);Y)

≤ ‖AS(·)D‖L1(0,∞;L(U,H))γ2mγ1‖x0‖H.
(4.10)

Passing to examination of E1, we consider the sequence of scalar functions {en}n∈N,

en(t) :=
t∫

0

‖AS(t− τ)D‖L(U,H)‖ (Ψxn) (τ)‖Ydτ,

generated by the sequence {xn}n∈N ⊂ D(A), ‖xn − x0‖H −→ 0 as n → ∞, where
the last sequence exists by density of D(A) in H. Because

(Ψxn)(t) = H∗AS(t)xn = H∗S(t)Axn, t > 0,

then, by EXS, one has: Ψxn ∈ BUC0([0,∞),Y) and consequently ‖Ψxn‖Y ∈
BUC0[0,∞). Employing (4.9) again, we conclude that {en}n∈N ⊂ BUC00[0,∞).

On the other side this sequence converges in L∞(0,∞) to e∞,

e∞(t) :=
t∫

0

‖AS(t− τ)D‖L(U,H)‖ (Ψx0) (τ)‖Ydτ,

where t ≥ 0 is a Lebesgue point of

e∞ ∈ L1(0,∞)∩L2(0,∞) as L1(0,∞)?[L1(0,∞)∩L2(0,∞)] ⊂ [L1(0,∞)∩L2(0,∞)].

Now,

|en(t)− e∞(t)| ≤
t∫

0

‖AS(t− τ)D‖L(U,H) |‖ (Ψxn) (τ)‖Y − ‖ (Ψx0) (τ)‖Y|dτ

≤
t∫

0

‖AS(t− τ)D‖L(U,H)‖ (Ψxn) (τ)− (Ψx0) (τ)‖Ydτ

≤ ‖xn − x0‖HE3(t),

E3(t) :=
t∫

0

‖AS(t− τ)D‖L(U,H)‖H∗AS(τ)‖L(H,Y)dτ.

(4.11)
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Applying (4.2) and (4.1) to E3 one obtains

E3(t) ≤
t∫

0

ηd(t− τ)e
−δ(t−τ)

(t− τ)α ηh(τ) e
−δτ

τ1−α dτ

≤ ηd(t)ηh(t)e−δt
t∫

0

dτ
(t− τ)ατ1−α

= ηd(t)ηh(t)e−δt
1∫

0

dξ
(1− ξ)αξ1−α = ηd(t)ηh(t)e−δt π

sin πα,

as the last integral equals the Beta-function

B(1− α, α) = Γ(1− α)Γ(α) = π

sin πα.

Hence E3 is bounded. Because BUC00[0,∞) is a closed subspace of L∞(0,∞) we obtain:
e∞ ∈ BUC00[0,∞). The same arguments which lead to (4.11) show that

E1(t) ≤ ‖x0‖Hηd(t)ηh(t)e−δt π

sin πα. (4.12)

Now (4.10), (4.12) jointly with EXS imply that 0 is GAS. Moreover, H 3 x0 7−→ xc ∈
BC0([0,∞); H) and xc(0) = x0, so xc is a weak solution of the open-loop system with
control uc(t) = −f [yc(t)],

d
dt 〈x

c(t), w〉H = 〈xc(t)−Df [Cxc(t)],A∗w〉H, w ∈ D(A∗). (4.13)

5. EXAMPLE: UNLOADED ELECTRIC RC TRANSMISSION LINE

Consider the system, depicted in Figure 2, consisting of a plant – an unloaded electric
RC transmission line and a block (controller) having the voltage to voltage static
characteristic f : R→ R. The plant dynamics is governed by the equations





0 =−Vθ(θ, τ)−RI(θ, τ), τ ≥ 0, 0 ≤ θ ≤ 1,
CVτ (θ, τ) =−Iθ(θ, τ), τ ≥ 0, 0 ≤ θ ≤ 1,
I(1, τ) = 0, τ ≥ 0,
U(τ) =V (0, τ), τ ≥ 0,
Y(τ) =V (1, τ), τ ≥ 0,

where Vθ(θ, τ) and I(θ, τ) denote, respectively, voltage and current at the spatial
point θ and time τ , U represents the control, Y is the output, R and C stand for the
resistance and capacity of the line for the unit length.
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RC
transmission line

Controller
aaaaaaaa!!!!!!!!

inv f-I(1, τ) = 0

-

0 1

θ

-

t t
6 6

V (1, τ)V (0, τ)

Fig. 2. Proportional feedback control of RC transmission line

Time rescaling x(θ, t) := V (θ,RCt), u(t) := U(RCt) and y(t) := Y(RCt) yields




xt(θ, t) =xθθ(θ, t) t ≥ 0, 0 ≤ θ ≤ 1,
xθ(1, t) = 0, t ≥ 0,

u(t) =x(0, t), t ≥ 0,
y(t) =x(1, t), t ≥ 0.

(5.1)

In the Hilbert space H = L2(0, 1) with standard scalar product, the dynamics (5.1)
can be written in the preliminary abstract form




ẋ=σx,
τx=u,
y= c#x,

(5.2)

with
σx=x′′, D(σ) =

{
x ∈ H2(0, 1) : x′(1) = 0

}
;

τx=x(0), D(τ) =C[0, 1] ⊃ D(σ)

and σ is a closed linear operator; the observation functional C = c# is given by

c#x = x(1), D(c#) = C[0, 1]. (5.3)

In order to transform (5.2), (5.3) into its abstract form (2.1) we proceed as follows.
From the relationships:

d ∈ D(σ), σd = 0; τd = −1

we determine a factor control vector d,

d′′(θ) = 0
d′(1) = 0
d(0) =−1



 ⇐⇒ d = −1 ∈ L2(0, 1); 1(θ) = 1, 0 ≤ θ ≤ 1.
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Thanks to this

τ [x(t) + du(t)] = τx(t) + τdu(t) = τx(t)− u(t) = 0,

i.e., x(t) + du(t) ∈ ker τ . Next,

ẋ(t) = σx(t) = σx(t) + σdu(t) = σ[x(t) + du(t)] = A[x(t) + du(t)],

provided that A := σ|ker τ , here given by

Ax = x′′, D(A) = {x ∈ H2(0, 1) : x′(1) = 0, x(0) = 0}; (5.4)

A = A∗ < 0 with the inverse,

(
A−1v

)
(θ) =

1∫

0

{
−θ, if θ < ϑ

−ϑ, if θ > ϑ

}
v(ϑ)dϑ, (5.5)

which is a HS operator. Thus, by discrete version of the spectral theorem, the spectrum
of A consists of countably many eigenvalues {λn}n∈Z∗ , Z∗ := N∪ {0} and there exists
a system of corresponding eigenvectors {en}n∈Z∗ being an orthonormal basis of H,

λn =−
(π

2 + nπ
)2

en(θ) =
√

2 sin
(π

2 + nπ
)
θ, 0 ≤ θ ≤ 1



 , n ∈ Z∗.

A generates on H an analytic, self-adjoint semigroup {S(t)}t≥0,

S(t)z =
∞∑

n=0
eλnt〈z, en〉Hen, z ∈ H, t ≥ 0.

This semigroup is EXS as here, by Parseval’s identity, (2.2) holds with M = 1 and
α = −λ0 = π2

4 .
We have c#A−1x = 〈x, h〉H, whence h(θ) = −θ, θ ∈ [0, 1]. Similarly

〈Ax, d〉H = −
1∫

0

x′′(θ)dθ = x′(0)

and therefore d∗A∗ = d∗A extends to

d#x = x′(0), D(d#) = C1[0, 1] 3 h, d#h = −1 = c#d.

Notice that

c#en = en(1) = (−1)n
√

2, d#en = e′n(0) =
√

2
√
−λn.

Since
x(θ) = (sI −A)−1d = cosh

√
s(1− θ)− cosh

√
s

s cosh
√
s

, (5.6)
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we find using (2.6)

Ĝ(s) = sc#(sI −A)−1d− c#d = 1
cosh

√
s
, s /∈ {λn}n∈Z∗ . (5.7)

Because for s ∈ C+ there holds
∣∣cosh

√
s
∣∣2 = sinh2

√
|s|+ Re s

2 + 1− sin2
√
|s| − Re s

2 ≥ sinh2 z + 1− sin2 z, (5.8)

where z =
√
|s|−Re s

2 ≥ 0, then Ĝ ∈ H∞(C+) with the norm ‖Ĝ‖H∞(C+) = 1 achieved
at s = 0.

Boundedness of Ĝ on jR is confirmed by the Nyquist curve depicted in Figure 3,
determining the spectrum σ(F) = Ĝ(C+).

Fig. 3. The Nyquist curve {Ĝ(jω)}ω∈R; Ĝ given by (5.7)

To show that Ĝ ∈ H2(C+) we continue the estimate (5.8):
∣∣cosh

√
s
∣∣2 ≥ sinh2 z + 1− sin2 z ≥ sinh2 z ≥ z6

36 ,

where z =
√
|s|−Re s

2 ≥ 0 and Re s ≥ 0, whence

|Ĝ(s)|2 ≤ 288
(|s| − Re s)3 ≤

288
(| Im s| − δ)3 , 0 ≤ Re s ≤ δ, | Im s| > δ,

and consequently, as |Ĝ(s)| ≤ 1 on C+,
∞∫

−∞

|Ĝ(s)|2d[Im s] <∞, 0 ≤ Re s ≤ δ.

From [9, Problem 2, p. 134], we get Ĝ ∈ H2(C+).
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Lemma 5.1. The pair (h, d) satisfies the conjugate Balakrishnan–Washburn estimates
(4.2) and (4.1) with

α = 1
4 , δ = −λ0, ηh(t) :=

√
2
√√

t+ 1, ηd(t) := π√
2

√
t
√
t+ 1.

Proof. To prove the estimate (4.2) we use successively

λn − λ0 ≤ −π2n2, n ∈ N;
∞∫

0

e−y
2
dy =

√
π

2 ,

getting
∞∑

n=0
|〈AS(t)h, en〉H|2 =

∞∑

n=0
e2λnt|c#en|2 = 2

∞∑

n=0
e2λnt

= 2e2λ0t

[
1 +

∞∑

n=1
e2(λn − λ0)t

]
≤ 2e2λ0t

[
1 +

∞∑

n=1
e−2π2n2t

]

≤ 2e2λ0t


1 +

∞∫

0

e−2π2n2tdn


 = 2

√
2πt+ 1√

2πt
e2λ0t.

Hence
‖AS(t)h‖2

H ≤ 2
√
t+ 1√
t

e2λ0t, t ≥ 0. (5.9)

To prove the estimate (4.1) we need, in addition,

λn
λ0
≤ 9n2, n ∈ N; xe−x ≤ e−1, x ≥ 0,

‖AS(t)d‖2
H =

∞∑

n=0
|〈AS(t)d, en〉H|2 = −

∞∑

n=0
2λne2λnt

= −2λ0e
2λ0t

[
1 +

∞∑

n=1

λn
λ0

e2(λn − λ0)t
]

≤ −2λ0e
2λ0t

[
1 + 9

π2t

∞∑

n=1
π2n2t e−2π2n2t

]

≤ −2λ0e
2λ0t

[
1 + 9

π2et

∞∑

n=1
e−π

2n2t

]

≤ −2λ0e
2λ0t


1 + 9

π2et

∞∫

0

e−π
2n2tdn


 = e2λ0t 2π2et

√
πt+ 9

4et
√
πt

.
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Hence
‖AS(t)d‖2

H ≤
π2

2
t
√
t+ 1
t
√
t

e2λ0t, t ≥ 0. (5.10)

The following result is borrowed from [8, Lemma 5.2, p. 27 and p. 33].

Lemma 5.2. The factor control vector d given by (5.3) is not admissible.

Remark 5.3. Taking

x0 = 0 and u(t) = χ[0,T ](t)
1

(T − t)α , T > 0, α ∈
[1

4 ,
1
2

)
,

we have u ∈ L2(0,∞) and we get

‖x(T )‖2
H = ‖ΦRTu‖2

H =
∞∑

n=0
|〈ΦRTu, en〉H|2

=
∞∑

n=0
|〈u,RTΦ∗en〉L2(0,∞)|2 =

∞∑

n=0

∣∣∣∣∣∣

T∫

0

1
(T − t)α d

∗AS(T − t)endt

∣∣∣∣∣∣

2

=
∞∑

n=0

∣∣∣∣∣∣
e′n(0)

T∫

0

eλn(T−t)

(T − t)α dt

∣∣∣∣∣∣

2

= 2
∞∑

n=0
(−λn)




T∫

0

eλnt

tα
dt




2

=∞

because [12, p. 55, last line in the proof of Proposition 2.1 with λ = −α and x = −λn]
T∫

0

eλnt

tα
dt = Γ(1− α)

(−λn)(1−α) + o
(
eTλn

)
as n→∞.

Remark 5.3 shows that (2.1) corresponding to the electric RC-transmission line
does not have a weak solution for an arbitrary u ∈ L2(0,∞).

Next,
Ĝ(0) = 1, Ĝ(±2π2j) = − 1

cosh π
and therefore

− 1
µ
/∈ σ(F) ∩ R = Ĝ(C+) ∩ R ⇐⇒ µ ∈ (−1, cosh π), (5.11)

so, here (3.3) holds for this range of µ.

Remark 5.4. It has been proved in [5], using the Riesz basis approach, and in
[7, Section 5.2], using a perturbation technique, that for this range of µ the linear
closed-loop system arising by taking f(y) = µy generates an EXS analytic semigroup
on H.



Small-gain theorem for a class of abstract parabolic systems 671

The output of transmission line is plugged in the sign inverting input of a con-
troller, whence u = −f(y) is a negative feedback control, e.g., if the nonlinear block is
an operational amplifier one has f(y) := M sat( κM y), where sat is the classical satura-
tion function and κ denotes the gain coefficient of an amplifier in the linear range.

Theorem 4.2 asserts that GAS of the origin holds for f satisfying (3.1), where
the Lipschitz constant m for f(y)− µy has to be determined from (3.5).

(3.5) means geometrically that the Nyquist plot
{

Ĝ(jω)
1+µĜ(jω)

}
ω∈R

is strictly inside

the disc with centre 0 and radius 1
m

as depicted in Figures 4–7.
Observe that magnitude of the Lipschitz constant m depends on the choice of µ:

the largest m = m3 is being obtained for µ = µ3.
An equivalent analytic formulation of the above geometric condition is

|1 + µĜ(jω)|2 > m2|Ĝ(jω)|2 > 0, ω ∈ R. (5.12)

Since

1
cosh(

√
jω) =





1
cosh[(1 + j)Ω] if ω ≥ 0,

1
cosh[(1− j)Ω] if ω ≤ 0,

Ω :=
√
ω

2 , cosh[(1± j)Ω] = cosh Ω cos Ω± j sinh Ω sin Ω,

then (5.12) is satisfied iff

(0 ≤) l(Ω) := (µ+ cos Ω cosh Ω)2 + sin2 Ω sinh2 Ω > m2.

We have

l′(Ω) = 2(sinh Ω cos Ω− cosh Ω sin Ω)[µ− h(Ω)],

where

h(Ω) := sin 2Ω− sinh 2Ω
2(sinh Ω cos Ω− cosh Ω sin Ω)

and

l′′(Ω) = 4[sinh2 Ω + sin2 Ω− µ sin Ω sinh Ω].

Hence for |µ| ≤ 2, l′′(Ω) ≥ 0, so l is convex and at Ω = 0 achieves its minimum
l(0) = (µ+ 1)2 > m2.

In particular, (5.12) holds for µ = 0, m < 1 and for µ = 2, m < 3 as confirmed by
Figures 4 and Figure 5, respectively.



672 Piotr Grabowski

Fig. 4. Verification of (3.5) for µ = 0, m = 1 Fig. 5. Verification of (3.5) for µ = 2, m = 3

The case of µ ∈ (2, cosh π) involves more sophisticated analysis. We start from
proving that the function h is on the interval [0, π] positive and strictly increasing
from h(0) = 2 to h(π) = cosh π; moreover l′(Ω) = (>)0 ⇐⇒ µ = (>)h(Ω). Indeed,

sinh Ω cos Ω− cosh Ω sin Ω = cosh Ω cos Ω[tanh Ω− tan Ω].

On [0, π/2) there holds

cosh Ω cos Ω > 0 and tan Ω ≥ tanh Ω

with equality sign only for Ω = 0.
On (π/2, π] there holds

cosh Ω cos Ω < 0 and tan Ω < tanh Ω.

Thus
sinh Ω cos Ω− cosh Ω sin Ω < 0, Ω ∈ (0, π]. (5.13)

This implies that h(Ω) > 0 on (0, π], while h(Ω) = 2 + 1
21 Ω4 for small |Ω|.

Now, h′(Ω) > 0 on (0, π] iff

[cosh 2Ω− cos 2Ω][cosh Ω sin Ω− sinh Ω cos Ω]︸ ︷︷ ︸
>0

[
1− f(Ω)

t(Ω)

]
> 0,

where
f(Ω) := sinh 2Ω− sin 2Ω

cosh 2Ω− cos 2Ω , t(Ω) := coth Ω− cot Ω,
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which reduces to proving that

f(Ω) < t(Ω)⇔ sinh 2Ω− sin 2Ω
cosh 2Ω− cos 2Ω < coth Ω− cot Ω = sinh 2Ω

cosh 2Ω− 1 −
sin 2Ω

1− cos 2Ω ,

or
sin4 Ω
sinh4 Ω

=
(

1− cos 2Ω
cosh 2Ω− 1

)2
>

sin 2Ω
sinh 2Ω = sin Ω cos Ω

sinh Ω cosh Ω .

Since sin Ω > 0 on (0, π) we have to prove that

cosh Ω
sinh3 Ω

>
cos Ω
sin3 Ω

⇐⇒ d
dΩ

[
1

sin2 Ω
− 1

sinh2 Ω

]
= d2t(Ω)

dΩ2 > 0. (5.14)

Recall well-known expansions

coth Ω = 1
Ω +

∞∑

n=1

(−1)n−122nBn
(2n)! Ω2n−1, cot Ω = 1

Ω −
∞∑

n=1

22nBn
(2n)! Ω2n−1, |Ω| < π,

where B>0, n ∈ N, are the Bernoulli numbers. Hence we get

t(Ω) =
∞∑

n=1

[1 + (−1)n−1]22nBn
(2n)! Ω2n−1 =

∞∑

k=1

24k−1B2k−1
(4k − 2)! Ω4k−3

= Ω
∞∑

k=1

24k−1B2k−1
(4k − 2)! Ω4k−4, |Ω| < π.

It allows to conclude that (5.14) holds on Ω ∈ (0, π). Finally, h′ is positive on (0, π].
Now, l′(Ω) = 0 at some Ω̃ ∈ (0, π] iff the value of h exceeds µ at Ω̃. Furthermore,

by (5.13) and the monotonicity of h, l achieves minimum at Ω̃ and
√
l(Ω̃) > m. This

is the case of Figure 7, where

µ = −1 + cosh π
2 , Ω̃ ≈ 2.652 432 102;

√
l(Ω̃) ≈ 3.463 645 509 > m.

We can also proceed in another way: since l′(Ω) = 0 iff µ = h(Ω) it is possible to
eliminate µ from definition of l getting the function:

r(Ω) := [h(Ω) + cosh Ω cos(Ω)]2 + (sinh Ω sin Ω)2.

We have

1
2r
′(Ω) = [h(Ω) + cosh Ω cos(Ω)]h′(Ω) + h(Ω)[sinh Ω cos Ω− cosh Ω sin Ω]

+ 1
2 sinh 2Ω− 1

2 sin 2Ω = [h(Ω) + cosh Ω cos(Ω)]h′(Ω),
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where the last equality holds due to definition of h. Hence, as h′ is positive, r′(Ω) = 0
iff h(Ω) = − cosh Ω cos(Ω). Applying the definition of h once more we obtain

h(Ω) = − cosh Ω cos(Ω)

⇐⇒ − cosh Ω cos(Ω) = sin 2Ω− sinh 2Ω
2(sinh Ω cos Ω− cosh Ω sin Ω)

⇐⇒ Ω = π or Ω 6= 0, tanh Ω = − tan Ω.

The last equation has a unique solution in (0, π) slightly larger than 3π
4 ≈ 2.356 194 490,

namely Ω̄ ≈ 2.365 020 372. The corresponding value of
√
r provides the maximal

possible value of the Lipschitz constant m,
√
r(Ω̄) ≈ 3.697 031 013. This corresponds

to
µ = h(Ω̄) ≈ 3.829 887 503

as confirmed by Figure 6.

Fig. 6. Checking of (3.5) for µ = 3.8298875
corresponding to m = 3.6970310

Fig. 7. Checking of (3.5) for µ = −1+coshπ
2 ,

m =
√
l(Ω̃) ≈ 3.697031013

6. DISCUSSION AND CONCLUSIONS

(i) In Example of Section 5 we have h ∈ D[(−A)κ] for κ ∈ [0, 3
4 ), whilst (5.9) implies

AS(·)h ∈ Lq(0,∞; H) for q ∈ [1, 4).
We have d ∈ D[(−A)α] for α ∈ [0, 1

4 ), whilst (5.10) gives AS(·)d ∈ Lp(0,∞; H) for
p ∈ [1, 4

3 ).
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Therefore, E1 cannot be estimated using neither Young’s inequality for convolution:

‖a ? b‖L∞(0,∞) ≤ ‖a‖Lp(0,∞)‖b‖Lq(0,∞),
1
p

+ 1
q

= 1,

nor the fractional powers approach.
A result on regularity of L2(0,∞; H)-solutions was obtained in [13, Theorem

2.1/case u0 ∈ L2(Ω)]. It concerns continuity of the state on an interval [h, T ], where
h > 0 and T is arbitrary but finite. Continuity of γ map introduced in [13, p. 348]
holds on the Sobolev space Hs(Ω), s ∈ (0, 1

2 ), which accordingly to [13, Formula (2.8),
p. 351 with ρ = 1

4 − s
2 ] can be identified with D[(−A)s/2]. In Example of Section 5 this

would hold if h ∈ D[(−A)3/4+ε] which is not the case. Thus our example is beyond
the scope of Triggiani’s results.

(ii) In Example of Section 5: the fact that jω 7→ Ĝ(jω) ∈ L2(jR), needed while
verifying the assumption (ii) of Theorem 4.2, can be proved directly. Indeed, with
Ω :=

√
ω/2 one has

1
8‖Ĝ‖

2
L2(jR) =

+∞∫

−∞

dω
8
∣∣cosh(

√
jω)
∣∣2 =

∞∫

0

dω
4
∣∣cosh

[
(1 + j)

√
ω
2
]∣∣2

=
∞∫

0

ΩdΩ
cos2 Ω + sinh2 Ω

=
ln(1+

√
2)∫

0

ΩdΩ
cos2 Ω + sinh2 Ω

+
∞∫

ln(1+
√

2)

ΩdΩ
cos2 Ω + sinh2 Ω

≤
ln(1+

√
2)∫

0

ΩdΩ
cos2 Ω +

∞∫

ln(1+
√

2)

ΩdΩ
sinh2 Ω

= [Ω tan Ω + ln cos Ω]ln(1+
√

2)
0 − [Ω coth Ω− ln sinh Ω]∞ln(1+

√
2) <∞.

(iii) Our results have to be compared with these which could be drawn from the
theory of nonlinear semigroups [14, Chapter III, Section 5, especially Theorem 5.2/(iv),
p. 122].

Here we limit ourselves to examining (incremental) dissipativity of the closed-loop
operator Ac, given by (4.4), with respect to, generally nonequivalent, scalar product
〈x, y〉H := 〈x,Hy〉H, dictated by an operator H ∈ L(H), H = H∗ > 0, i.e., x∗Hx > 0
for any x 6= 0.

Let
∆x = x1 − x2, x1, x2 ∈ D(C), ∆f = f(Cx1)− f(Cx2)

and
∆x−D∆f ∈ D(A).
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Then
〈∆Ac,∆x〉H + 〈∆x,∆Ac〉H = 〈∆Ac,H∆x〉H + 〈H∆x,∆Ac〉H
= 〈A(∆x−D∆f),H∆x〉H + 〈H∆x,A(∆x−D∆f)〉H
= 〈A(∆x−D∆f),H(∆x−D∆f)〉H + 〈A(∆x−D∆f),HD∆f〉H

+〈H(∆x−D∆f),A(∆x−D∆f)〉H + 〈HD∆f,A(∆x−D∆f)〉H
=
[
A(∆x−D∆f)

∆f

]∗ [ HA−1 +A−∗H HD
D∗H 0

] [
A(∆x−D∆f)

∆f

]
.

The Lipschitz condition (3.1) can equivalently be written as

0 ≥ ‖∆f − µ∆y‖2
U −m2‖∆y‖2

Y = ‖∆f − µC∆x‖2
U −m2‖C∆x‖2

Y

= ‖∆f − µH∗A(∆x−D∆f)− µCD∆f‖2
U −m2‖H∗A(∆x−D∆f) + CD∆f‖2

Y

=
[
A(∆x−D∆f)

∆f

]∗ [
HQH∗ HN
N∗H∗ R

] [
A(∆x−D∆f)

∆f

]
,

where
Q := µ∗µ−m2I ∈ L(Y), N := −µ∗ + Q(CD) ∈ L(U,Y),
R := (I − µCD)∗(I − µCD)−m2(CD)∗(CD) ∈ L(U),

Now, adding and subtracting ‖∆f − µ∆y‖2
U −m2‖∆y‖2

Y, we obtain:

〈∆Ac,∆x〉H + 〈∆x,∆Ac〉H = ‖∆f(y)− µ∆y‖2
U −m2‖∆y‖2

Y

+
[
A(∆x−D∆f)

∆f

]∗
M

[
A(∆x−D∆f)

∆f

]
,

M :=
[
HA−1 +A−∗H−HQH∗ HD −HN

D∗H−N∗H∗ −R

]
= M∗ ∈ L(H⊕U)

and Ac is dissipative with respect to the scalar product 〈x, y〉H if

∃H ∈ L(H),H = H∗ > 0 : M ≤ 0. (6.1)

It is clear that necessary conditions for (6.1) to hold are:

∃H > 0 : HA−1 +A−∗H−HQH∗ ≤ 0
⇐⇒ 〈Ax,Hx〉H + 〈Hx,Ax〉H − 〈Cx,QCx〉Y ≤ 0, x ∈ D(A),

and, by complexifying and examining the operator matrix sign on vectors:
[
(jωI −A−1)−1Du

u

]
, u ∈ U,

we come to
R + 2 Re[N∗H∗(jωI −A−1)−1D]
+[H∗(jωI −A−1)−1D]∗Q[H∗(jωI −A−1)−1D] ≥ 0 ∀ω 6= 0
⇐⇒ Π(jω) := I + 2 Re[µĜ(jω)] + [Ĝ(jω)]∗QĜ(jω) ≥ 0 ∀ω ∈ R;
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Π : jR 3 jω 7−→ Π(jR) ∈ L(U) will be called the Popov spectral function for M.
Indeed, the identity

H∗(sI −A−1)−1D = −s−1H∗A(s−1I −A)−1D = −s−1C(s−1I −A)−1D
= −Ĝ(s−1)− CD

(6.2)

yields

R − 2 Re
{

N∗[Ĝ(jω) + CD]
}

+
[
Ĝ(jω) + CD

]∗
Q[Ĝ(jω) + CD]

= (I − µCD)∗(I − µCD)−m2(CD)∗(CD)− 2 Re
{

[−µ∗ + Q(CD)]∗[Ĝ(jω) + CD]
}

+
[
Ĝ(jω) + CD

]∗
Q[Ĝ(jω) + CD]

= I − (CD)∗µ∗ − µCD + (CD)∗Q(CD)
+ 2 Re[µĜ(jω)]− 2 Re[(CD)∗QĜ(jω)]
+ 2 Re[µCD]− 2(CD)∗Q(CD) + [Ĝ(jω)]∗QĜ(jω)
+ (CD)∗QĜ(jω) + [Ĝ(jω)]∗Q(CD) + (CD)∗Q(CD)

= I + 2 Re[µĜ(jω)] + [Ĝ(jω)]∗QĜ(jω).

We have Π(j0) = R because Ĝ(j0) = −CD. We say that Π is coercive if Π(jω) ≥ εI > 0
for all ω ∈ R. Then Π(j0) = R is boundedly invertible.

(iv) (3.5) with H∞(C+,L(U,Y)) norm replaced by L∞(jR,L(U,Y)) norm equiva-
lently reads as

∥∥∥Ĝ(jω)(I + µĜ(jω))−1z
∥∥∥

2

Y
<

1
m2 ‖z‖

2
U ∀z ∈ U ∀ω ∈ R.

In turn, the latter can be written as

m2
∥∥∥Ĝ(jω)w

∥∥∥
2

Y
<
∥∥∥[I + µĜ(jω)]w

∥∥∥
2

U
∀w ∈ U ∀ω ∈ R,

and finally,

〈u,Πu〉U > 0 ∀u ∈ U,∀ω ∈ R ⇐⇒ Π(jω) > 0 ∀ω ∈ R. (6.3)

This is a frequency-domain inequality of the circle criterion type [10].
The question whether (6.3) is sufficient for M ≤ 0, even without requirement that

H > 0, remains an open problem.
However, if dim U <∞ and

Ĝ(jω) s−→ 0 ∈ L(U,Y) as |ω| → ∞ (6.4)

then Π is coercive. Indeed, as dim U <∞, (6.3) is equivalent to the coercivity of Π on
any compact interval of the imaginary axis. Moreover, if Ĝ(jω) ⇀ 0 then

〈Re[µĜ(jω)]u, u〉U = 〈Ĝ(jω)u, µ∗u〉U + 〈Ĝ(jω)u, µ∗u〉U → 0,
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while, to ensure 〈Ĝ(jω)u,QĜ(jω)u〉U → 0 we have then to assume that Q is a compact
operator. But Q = µ∗µ−m2I, where µ ∈ L(Y,U) is compact as U is finite dimensional,
whence m2I would be compact, which is possible only when dim Y < ∞. Thus we
have assumed (6.4) to get Π(jω) s−→ I. Thanks to this Π is coercive on jR and R is
coercive, whence boundedly invertible.

Making the identifications:

A = A−1, B = D, C = H∗

one can see the following facts.
(a) C is admissible with respect to the semigroup generated by A iff H is admissible

with respect to the semigroup generated by A−1 [5, p. 323].
(b) The operator-valued function s 7−→ C(sI −A)−1B is in H∞(C+,L(U,Y)) which

follows from (2.6) and (6.2).
(c) Let dim U <∞ and (6.4) holds. Then Π is coercive, equivalently

R + 2 Re[N∗C(jωI −A)−1B] + [C(jωI −A)−1B]∗Q[C(jωI −A)−1B]

is coercive.
(d) Now, the result of [6, Theorem 2.4] yields: M ≤ 0.

Actually, the Lur’e system of resolving equations:
{
HA−1 +A−∗H−HQH∗=−GG∗,

−HD +HN =−GR1/2 (6.5)

has a solution (H,G), H ∈ L(H), H = H∗, G ∈ L(U,H) but without any
knowledge whether H > 0.
If, in addition, {etA}t≥0 is uniformly bounded and intersection of the spectrum of
A with imaginary axis is contained in {0} (the latter clearly holds in our context)
then Π has the representation:

Π(jω) = [Θ(jω)]∗Θ(jω), Θ(s) := R1/2 −G∗(sI −A)−1B, (6.6)

and Θ(s) is in H∞(C+,L(U)) jointly with its inverse [Θ(s)]−1.
(e) If Q ≤ 0 then, for all z ∈ H there holds

z∗Hz ≥
∞∫

0

‖(−Q)1/2H∗AS(t)z‖2
Ydt = ‖(−Q)1/2Ψz‖2

L2(0,∞;Y)

and therefore H ≥ 0.
Now, if Q < 0 then kerH = {0}, provided that ker Ψ = {0}, i.e., the pair
(A, C) is infinite-time approximately observable (equivalently the pair (A−1,H∗) is
infinite-time approximately observable). Therefore, if the latter holds then H > 0.
The equivalence of norms ‖ · ‖e, ‖ · ‖H holds iff, in addition, H is boundedly
invertible. Sufficient conditions for that are: the coercivity of (−Q) as well as the
infinite-time exact controllability of the pair (A, C), i.e.,

∃γ > 0 ∀z ∈ H : ‖Ψz‖L2(0,∞;Y) ≥ γ‖z‖H.
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If dim Y <∞ then Ψ is a HS operator, whence Ψ∗QΨ is compact and therefore
H cannot be coercive until dim H =∞.
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